Calendar Event Schedule

Academic Calendar

Event Scheduled for Oct 11, 2018

Event: MSE PhD Dissertation Defense - Sriram Vijayan

Location: UTEB-476

Time: 11:00 am

Details of Event:
MSE PhD Dissertation Defense

Presenter: Sriram Vijayan
Major Advisor: Dr. Mark Aindow
Associate Advisors: Dr. C. Barry Carter, Dr. Seok-Woo Lee, Dr. Rainer Hebert, Dr. Volkan Ortalan, and Dr. Yuanyuan Zhu

Date: Thursday, October 11th, 2018
Time: 11:00 AM
Location: UTEB 476

Title: In Situ Investigation of Thermally Activated Processes Using MEMS-Based Devices: Challenges & Applications

In situ heating holders offer the possibility of studying thermally activated processes by performing real time, high temperature experiments inside the transmission electron microscope. The poor thermal stability of traditional furnace-type heating holders limits their use to a narrow range of materials and processes. Modern micro electro mechanical system (MEMS) based heating holders have significantly improved the ability to perform such experiments and have led to a revival in the field of in situ TEM. The excellent thermal stability of the MEMS devices allows us to carry out controlled heating and cooling experiments on both particulate and bulk samples at high spatial resolution. Despite these advantages, there are several practical challenges to the use of MEMS-based heating holders. In this dissertation, two important issues that impede the reliable interpretation of data from MEMS-based in situ heating experiments are addressed: measurement of specimen temperature, and preparation/transfer of site-selective specimens from bulk samples. It is shown that the specimen temperature can be obtained from the size-dependent sublimation behavior of monodisperse polyvinyl pyrrolidone capped Ag-nanocubes using the Kelvin equation. This approach gives the temperature of the microheater membrane to an accuracy of 5 ⁰C, and a systematic evaluation of the different potential sources of error is presented. Next, a protocol is described for using a dual-beam focused ion beam - scanning electron microscope (FIB-SEM) to perform site selective specimen preparation and transfer onto a MEMS microheater. The critical features of this protocol are the specimen geometry and a custom FIB-SEM sample stage that minimizes ion beam exposure during the procedure. This approach is then used to prepare cross- sectional specimens from gas-atomized powder particles of three Al-alloys; solid solution strengthened Al-Mg, precipitation hardenable Al-Mg-Si, and an Al-Mn-Cr-Co-Zr alloy, which contains icosahedral quasicrystalline dispersoids. In situ scanning transmission electron microscopy heating experiments on these samples revealed a wide variety of thermally activated processes such as: solute redistribution to eliminate micro-segregation; dissolution, coarsening, transformation and decomposition of secondary phases; and precipitation within the aluminum matrix.

Target Audience: Not Available

Sponsored By: Materials Science and Engineering Department

Pamphlet/Flyer: No Pamphlet/Flyer Available

Back to previous page