ME 2233 THERMODYNAMIC PRINCIPLES
(Fall 2012)

Class Meeting: TuTh 2:00 – 3:15 pm, Classroom Building (CB) 302
Instructor: Tai-Hsi Fan
Office: UTEB 386
Office Hours: TuTh 10 am – 12 noon
Email/Phone: thfan@engr.uconn.edu / 860-486-0553
Teaching Assistant: Javier Martinez Email: jmartrubio@gmail.com
Office: EII-313 Office Hours: MW 9:30 am – 11:30 am

Course Description and Policy

Objectives ME2233 is a sophomore-level engineering thermodynamics. The prerequisites are undergraduate courses in general physics and multivariable calculus. The specific goals of this course for students to achieve are: (1) To learn the basic principles of engineering thermodynamics; (2) To use thermodynamic principles in engineering practices; (3) To be familiar with the language of engineering analysis; (4) To prepare a foundation for advanced thermal-fluid courses including fluid mechanics, thermodynamics II, and heat and mass transfer.

Homework Homework assignments will be made on an approximately biweekly basis. Students are encouraged to discuss homework problems with classmates or the teaching assistant, but the collected works must be individual efforts. Homework must be clearly written on only one side of the paper, and stapled. Using solution manual from the textbook publisher or other resources to prepare the homework is strictly prohibited. Any evidence of using the solution manual will result in a failing grade for the course. Homeworks will be graded by the teaching assistant.

Quiz and Exam There are several 20 minute long quizzes from time to time during the semester. There will be a midterm exam and a final exam. All of the exams and quizzes are closed book and closed note. If needed, the thermodynamic tables will be attached to the exam or quizzes.

Computer and Software There will be no computer programming involved in this course. Access to interactive software and any web-based student resources from the publisher is NOT required.

Absences and Missed Work Class participation is essential for learning thermodynamics. No late homework, makeup quiz, or makeup exam will be accepted unless the missed work is “resulting from extra-curricular/co–curricular activities performed in the interest of the university and/or those that support the scholarly development of the student”. In such case, the student should inform the instructor in advance for further arrangement.

Grade Determination The course grade will be determined based on homework (20%), quizzes (20%), mid-term (30%), and comprehensive final exam (30%).
Course Outlines

• Basic Concepts and Definitions in Engineering Thermodynamics (Ch.1)
 Thermodynamic system, property, state, and process
 Temperature scale, pressure, basic dimension and units
 Thermal equilibrium and thermodynamic equilibrium
 The zeroth law of thermodynamics
 Open system and closed system

• Energy and the First Law of Thermodynamics (Ch. 2)
 Energy, work, and heat transfer
 Point function and path function
 The first law of thermodynamics
 Quasi-equilibrium, polytropic, isolated, isothermal, adiabatic, and cyclic processes
 Performance of a cyclic process

• Thermodynamic Properties (Ch.3)
 State principle
 Simple compressible substance
 T-v, P-v diagrams
 Ideal gas model
 Internal energy, enthalpy, and specific heats

• Midterm (2:00 − 3:15 pm CB 302)

• Control Volume Analysis (Ch.4)
 Mass and energy conservation for the control volume analysis
 Steady state and transient analyses of open and closed systems

• The Second Law of Thermodynamics (Ch.5)
 Clausius inequality
 The second law of thermodynamics
 Irreversible process
 Kelvin temperature scale
 Carnot corollaries, Carnot cycle and thermal efficiency

• Using Entropy (Ch.6)
 The physical origin of entropy
 Entropy analysis for closed and open systems
 Tds Relations
 Isentropic efficiencies
 Frequently seen devices in thermodynamics

• Exergy Analysis (Ch.7)
 Definition of exergy
 Exergy analysis for closed and open systems

• Final Exam (2 to 3 hrs, schedule to be arranged)