Overview

- Motivation and economics
- Definitions
- *Built-in self-testing* (BIST) process
- BIST *pattern generation* (PG)
- BIST *response compaction* (RC)
- *Aliasing* definition and example
- Summary
BIST Motivation

- Useful for field test and diagnosis (less expensive than a local automatic test equipment)
- Software tests for field test and diagnosis:
 - Low hardware fault coverage
 - Low diagnostic resolution
 - Slow to operate
- Hardware BIST benefits:
 - Lower system test effort
 - Improved system maintenance and repair
 - Improved component repair
 - Better diagnosis at component level

Costly Test Problems Alleviated by BIST

- Increasing chip logic-to-pin ratio – harder observability
- Increasingly dense devices and faster clocks
- Increasing test generation and application times
- Increasing size of test vectors stored in ATE
- Expensive ATE needed for GHz clocking chips
- Hard testability insertion – designers unfamiliar with gate-level logic, since they design at behavioral level
- Shortage of test engineers
- Circuit testing cannot be easily partitioned
Benefits and Costs of BIST with DFT

<table>
<thead>
<tr>
<th>Level</th>
<th>Design test</th>
<th>Fabrication</th>
<th>Manuf. Test</th>
<th>Maintenance test</th>
<th>Diagnosis and repair</th>
<th>Service interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips</td>
<td>+ / -</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boards</td>
<td>+ / -</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>+ / -</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ Cost increase
- Cost saving
+/-- Cost increase may balance cost reduction

Economics – BIST Costs

- Chip area overhead for:
 - Test controller
 - Hardware pattern generator
 - Hardware response compacter
 - Testing of BIST hardware
- Pin overhead -- At least 1 pin needed to activate BIST operation
- Performance overhead – extra path delays due to BIST
- Yield loss – due to increased chip area or more chips in system because of BIST
- Reliability reduction – due to increased area
- Increased BIST hardware complexity – happens when BIST hardware is made testable
BIST Benefits

- **Faults tested:**
 - Single combinational / sequential stuck-at faults
 - Delay faults
 - Single stuck-at faults in BIST hardware

- **BIST benefits**
 - Reduced testing and maintenance cost
 - Lower test generation cost
 - Reduced storage / maintenance of test patterns
 - Simpler and less expensive ATE
 - Can test many units in parallel
 - Shorter test application times
 - Can test at functional system speed

Definitions

- **BILBO** – *Built-in logic block observer*, extra hardware added to flip-flops so they can be reconfigured as an LFSR pattern generator or response compacter, a scan chain, or as flip-flops
- **Concurrent testing** – Testing process that detects faults during normal system operation
- **CUT** – *Circuit-under-test*
- **Exhaustive testing** – Apply all possible 2^n patterns to a circuit with n inputs
- **LFSR** – *Linear feedback shift register*, hardware that generates pseudo-random pattern sequence
More Definitions

- **Primitive polynomial** – Boolean polynomial $p(x)$ that can be used to compute increasing powers n of x modulo $p(x)$ to obtain all possible non-zero polynomials of degree less than $p(x)$

- **Pseudo-exhaustive testing** – Break circuit into small, overlapping blocks and test each exhaustively

- **Pseudo-random testing** – Algorithmic pattern generator that produces a subset of all possible tests with most of the properties of randomly-generated patterns

- **Signature** – Any statistical circuit property distinguishing between bad and good circuits

- **TPG** – Hardware *test pattern generator*

BIST Process

- **Test controller** – Hardware that activates self-test simultaneously on all PCBs

- Each board controller activates parallel chip BIST Diagnosis effective only if very high fault coverage
BIST Architecture

Note: BIST cannot test wires and transistors:
- From PI pins to Input MUX
- From POs to output pins

BILBO – Works as Both a TPG and a RC

Built-in Logic Block Observer (BILBO) -- 4 modes:
1. Flip-flop
2. LFSR pattern generator
3. LFSR response compacter
4. Scan chain for flip-flops
Complex BIST Architecture

- **Testing epoch I:**
 - LFSR1 generates tests for CUT1 and CUT2
 - BILBO2 (LFSR3) compacts CUT1 (CUT2)
- **Testing epoch II:**
 - BILBO2 generates test patterns for CUT3
 - LFSR3 compacts CUT3 response

Bus-Based BIST Architecture

- **Self-test control** broadcasts patterns to each CUT over bus
 - parallel pattern generation
- Awaits bus transactions showing CUT’s responses to the patterns: serialized compaction
Pattern Generation

- Store in ROM – too expensive
- **Exhaustive**
- **Pseudo-exhaustive**
- **Pseudo-random (LFSR)** – Preferred method
- Binary counters – use more hardware than LFSR
- Modified counters
- Test pattern *augmentation*
 - LFSR combined with a few patterns in ROM
 - *Hardware diffracter* – generates pattern cluster in neighborhood of pattern stored in ROM

Exhaustive Pattern Generation (A Counter)

- Shows that every state and transition works
- For *n*-input circuits, requires all 2^n vectors
- Impractical for large *n* (>20)
Pseudo-Exhaustive Pattern Generation

```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X2</td>
<td>X3</td>
<td>X4</td>
<td>X5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Random Pattern Testing

Bottom: Random Pattern Resistant circuit

(a) Top curve -- random pattern testing with acceptable fault coverage.
(b) Bottom curve -- unacceptable random pattern testing.
Pseudo-Random Pattern Generation

- **Standard Linear Feedback Shift Register (LFSR)**
 - Normally known as *External XOR* type LFSR
 - Produces patterns algorithmically – repeatable
 - Has most of desirable random # properties
- Need not cover all 2^n input combinations
- Long sequences needed for good fault coverage

Theory: LFSRs

- **Galois field** (mathematical system):
 - Multiplication by x same as right shift of LFSR
 - Addition operator is XOR (\oplus)
- T_x companion matrix for a standard (external XOR type) LFSR:
 - 1st column 0, except nth element which is always 1 (x_0 always feeds x_{n-1})
 - Rest of row n – feedback coefficients h_i
 - Rest is identity matrix I – means a right shift
- Near-exhaustive (maximal length) LFSR
 - Cycles through $2^n - 1$ states (excluding all-0)
 - 1 pattern of n 1’s, one of $n-1$ consecutive 0’s
Standard n-Stage LFSR

- If $h_i = 0$, that XOR gate is deleted

Matrix Equation for Standard LFSR

\[
\begin{bmatrix}
X_0 (t+1) \\
X_1 (t+1) \\
\vdots \\
X_{n-3} (t+1) \\
X_{n-2} (t+1) \\
X_{n-1} (t+1)
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & h_1 & h_2 & \cdots & h_{n-2} & h_{n-1}
\end{bmatrix}
\begin{bmatrix}
X_0 (t) \\
X_1 (t) \\
\vdots \\
X_{n-3} (t) \\
X_{n-2} (t) \\
X_{n-1} (t)
\end{bmatrix}
\]

\[X (t+1) = T_s X (t) \quad (T_s \text{ is companion matrix})\]
LFSR Theory (contd.)

- Cannot initialize to all 0’s – hangs
- If \(X \) is initial state, progresses through states \(X, T_s X, T_s^2 X, T_s^3 X, \ldots \)
- **Matrix period:**
 - Smallest \(k \) such that \(T_s^k = I \)
 - \(k \equiv \text{LFSR cycle length} \)
- **Described by characteristic polynomial:**
 \[
 f(x) = | T_s - IX | = 1 + h_1 x + h_2 x^2 + \ldots + h_{n-1} x^{n-1} + x^n
 \]

Example External XOR LFSR

![Diagram of an External XOR LFSR](image)

\[F(x) = 1 + x + x^3 \]
Example: External XOR LFSR (contd.)

- Matrix equation:
 \[
 \begin{bmatrix}
 x_0 (t+1) \\
 x_1 (t+1) \\
 x_2 (t+1)
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x_0 (t) \\
 x_1 (t) \\
 x_2 (t)
 \end{bmatrix}
 \]

- Companion matrix:
 \[
 T_s = \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 1 & 0
 \end{bmatrix}
 \]

- Characteristic polynomial:
 \[f(x) = 1 + x + x^3 \]
 (read taps from right to left)
 - Always have 1 and \(x^n \) terms in polynomial

External XOR LFSR

- Pattern sequence for example LFSR (earlier):
 \[
 \begin{array}{c|cccccccc}
 x_0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
 x_1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
 x_2 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
 \end{array}
 \]

- Never repeat an LFSR pattern more than 1 time –Repeats same error vector, cancels fault effect
Generic Modular (Internal XOR) LFSR

\[1 + h_1 x + h_2 x^2 + \ldots + h_{n-1} x^{n-1} + x^n \]

Modular Internal XOR LFSR

- Described by companion matrix \(T_m = T_s^T \)
- Internal XOR LFSR – XOR gates in between D flip-flops
- Equivalent to standard External XOR LFSR
 - With a different state assignment
 - Faster – usually does not matter
 - Same amount of hardware
- \(X(t + 1) = T_m \times X(t) \)
- \(f(x) = | T_m - IX | \)
 \[= 1 + h_1 x + h_2 x^2 + \ldots + h_{n-1} x^{n-1} + x^n \]
- Right shift – equivalent to multiplying by \(x \) and then dividing by characteristic polynomial and storing the remainder
Modular LFSR Matrix

\[
\begin{bmatrix}
X_0 (t+1) \\
X_1 (t+1) \\
X_2 (t+1) \\
\vdots \\
X_{n-3} (t+1) \\
X_{n-2} (t+1) \\
X_{n-1} (t+1)
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 & h_1 \\
0 & 1 & 0 & \ldots & 0 & 0 & h_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & h_{n-3} \\
0 & 0 & 0 & \ldots & 1 & 0 & h_{n-2} \\
0 & 0 & 0 & \ldots & 0 & 1 & h_{n-1}
\end{bmatrix}
\begin{bmatrix}
X_0 (t) \\
X_1 (t) \\
X_2 (t) \\
\vdots \\
X_{n-3} (t) \\
X_{n-2} (t) \\
X_{n-1} (t)
\end{bmatrix}
\]

Example Modular LFSR

- \(f(x) = 1 + x^2 + x^7 + x^8 \)
- Read LFSR tap coefficients from left to right
Primitive Polynomials

- Want LFSR to generate all possible \(2^n - 1\) patterns (except the all-0 pattern)
- Conditions for this – must have a **primitive polynomial**:
 - **Monic** – coefficient of \(x^n\) term must be 1
 - Modular LFSR – all D FF’s must right shift through XOR’s from \(X_0\) through \(X_1, \ldots, X_{n-1}\), which must feed back directly to \(X_0\)
 - Standard LFSR – all D FF’s must right shift directly from \(X_{n-1}\) through \(X_{n-2}, \ldots, X_0\), which must feed back into \(X_{n-1}\) through XORing feedback network

Weighted Pseudo-Random Pattern Generation

- If \(p(1)\) at all PIs is 0.5, \(p_F(1) = 0.5^8 = \frac{1}{256}\)
 \[p_F(0) = 1 - \frac{1}{256} = \frac{255}{256} \]
- Will need enormous # of random patterns to test a stuck-at 0 fault on \(F\) -- LFSR \(p(1) = 0.5\)
 - We must not use an ordinary LFSR to test this
- IBM – holds patents on weighted pseudo-random pattern generator in ATE
Weighted Pseudo-Random Pattern Generator

- LFSR $p(1) = 0.5$
- Solution:
 - Add programmable weight selection and complement LFSR bits to get $p(1)$'s other than 0.5
- Need 2-3 weight sets for a typical circuit
- Weighted pattern generator drastically shortens pattern length for pseudo-random patterns

Weighted Pattern Gen.

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
<th>Inv.</th>
<th>$p \text{ (output)}$</th>
<th>w_1</th>
<th>w_2</th>
<th>Inv.</th>
<th>$p \text{ (output)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1/8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7/8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15/16</td>
</tr>
</tbody>
</table>

15 April 2007
Test Pattern Augmentation

- Secondary ROM – to get LFSR to 100% SAF coverage
 - Add a small ROM with missing test patterns
 - Add extra circuit mode to Input MUX – shift to ROM patterns after LFSR done
 - Important to compact extra test patterns
- Use diffracter:
 - Generates cluster of patterns in neighborhood of stored ROM pattern
- Transform LFSR patterns into new vector set
- Put LFSR and transformation hardware in full-scan chain

Response Compaction

- Severe amounts of data in CUT response to LFSR patterns – example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million × 200 = 1 billion bits response
- Uneconomical to store and check all of these responses on chip
- Responses must be compacted
Definitions

- **Aliasing** – Due to information loss, signatures of good and some bad machines match.
- **Compaction** – Drastically reduce # bits in original circuit response – lose information.
- **Compression** – Reduce # bits in original circuit response – no information loss – fully invertible (can get back original response).
- **Signature analysis** – Compact good machine response into good machine signature. Actual signature generated during testing, and compared with good machine signature.
- **Transition Count Response Compaction** – Count # transitions from $0 \to 1$ and $1 \to 0$ as a signature.

Transition Counting

(a) Logic simulation of good machine and fault a stuck-at-1.

(b) Transition counts of good and failing machines.
Transition Counting Details

- Transition count:
 \[G(R) = \sum_{i=1}^{m} (r_i \oplus r_{i-1}) \] for all \(m \) primary outputs

- To maximize fault coverage:
 - Make \(G(R0) \) – good machine transition count – as large or as small as possible

LFSR for Response Compaction

- Use cyclic redundancy check code (CRCC) generator (LFSR) for response compacter
- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial
- CRCC divides the PO polynomial by its characteristic polynomial
 - Leaves remainder of division in LFSR
 - Must initialize LFSR to seed value (usually 0) before testing
- After testing – compare signature in LFSR to known good machine signature
- Critical: Must compute good machine signature
Example Modular LFSR Response
Compacter

- LFSR seed value is “00000”

Polynomial Division

<table>
<thead>
<tr>
<th>Inputs</th>
<th>x^0</th>
<th>x^1</th>
<th>x^2</th>
<th>x^3</th>
<th>x^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial State</td>
<td>0 0 0 0 0 0</td>
<td>1 1 0 0 0 0</td>
<td>0 0 1 0 0 0</td>
<td>0 0 0 1 0 0</td>
<td>0 0 0 0 1 0</td>
</tr>
<tr>
<td>Logic Simulation:</td>
<td>0 0 0 0 1 0</td>
<td>1 1 0 0 0 1</td>
<td>0 1 0 0 1 0</td>
<td>1 1 1 0 0 1</td>
<td>0 1 0 1 1 0</td>
</tr>
</tbody>
</table>

Logic simulation: $\text{Remainder} = 1 + x^2 + x^3$

\[
\begin{align*}
0 \cdot x^0 + 1 \cdot x^1 + 0 \cdot x^2 + 1 \cdot x^3 + 0 \cdot x^4 + 0 \cdot x^5 + 0
\end{align*}
\]
Symbolic Polynomial Division

\[
x^5 + x^3 + x + 1 \div x^2 + 1
\]

\[
\begin{array}{c}
\hline
x^7 + x^5 + x^3 + x^2 + x \\
x^7 \\
\hline
x^5 + x^3 + x + 1 \\
x^3 + x^2 + 1 \\
\end{array}
\]

remainder

Remainder matches that from logic simulation of the response compacter!

Multiple-Input Signature Register (MISR)

- Problem with ordinary LFSR response compacter:
 - Too much hardware if one of these is put on each primary output (PO)
- Solution: MISR – compacts all outputs into one LFSR
 - Works because LFSR is linear – obeys superposition principle
 - Superimpose all responses in one LFSR – final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial
MISR Matrix Equation

- \(d_i(t) \) – output response on \(PO_i \) at time \(t \)

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
\vdots \\
X_{n-3}(t+1) \\
X_{n-2}(t+1) \\
X_{n-1}(t+1)
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 \\
1 & h_1 & \cdots & h_{n-2} & h_{n-1}
\end{bmatrix}
\begin{bmatrix}
X_0(t) \\
X_1(t) \\
\vdots \\
X_{n-3}(t) \\
X_{n-2}(t) \\
X_{n-1}(t)
\end{bmatrix}
+ \begin{bmatrix}
d_0(t) \\
d_1(t) \\
\vdots \\
d_{n-3}(t) \\
d_{n-2}(t) \\
d_{n-1}(t)
\end{bmatrix}
\]

Modular MISR Example

Charateristic Polynomial: \(x^3 + x + 1 \)

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
X_2(t+1)
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
X_0(t) \\
X_1(t) \\
X_2(t)
\end{bmatrix}
+ \begin{bmatrix}
d_0(t) \\
d_1(t) \\
d_2(t)
\end{bmatrix}
\]
Multiple Signature Checking

- Use 2 different testing epochs:
 - 1st with MISR with 1 polynomial
 - 2nd with MISR with different polynomial
- Reduces probability of aliasing –
 - Very unlikely that both polynomials will alias for the same fault
- Low hardware cost:
 - A few XOR gates for the 2nd MISR polynomial
 - A 2-1 MUX to select between two feedback polynomials

Aliasing Probability

- Aliasing – when bad machine signature equals good machine signature
- Aliasing: $1/2^n$
- Consider error vector $e(n)$ at POs
 - Set to a 1 when good and faulty machines differ at the PO at time t
- $P_{al} \equiv$ aliasing probability
- $p \equiv$ probability of 1 in $e(n)$
- Aliasing limits:
 - $0 < p \leq 1/2, \ p^k \leq P_{al} \leq (1 - p)^k$
 - $1/2 \leq p \leq 1, \ (1 - p)^k \leq P_{al} \leq p^k$
Experiment Hardware

- 3 bit exhaustive binary counter for pattern generator

Transition Counting vs. LFSR

- LFSR aliases for f_{sa1}, transition counter for a_{sa1}

<table>
<thead>
<tr>
<th>Pattern abc</th>
<th>Responses</th>
<th>Good</th>
<th>a_{sa1}</th>
<th>f_{sa1}</th>
<th>b_{sa1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Signatures

<table>
<thead>
<tr>
<th>Transition Count</th>
<th>LFSR</th>
<th>001</th>
<th>101</th>
<th>001</th>
<th>010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Summary

- LFSR pattern generator and MISR response compacter – preferred BIST methods
- BIST has overheads: test controller, extra circuit delay, Input MUX, pattern generator, response compacter, DFT to initialize circuit & test the test hardware
- BIST benefits:
 - At-speed testing for delay & stuck-at faults
 - Drastic ATE cost reduction
 - Field test capability
 - Faster diagnosis during system test
 - Less effort to design testing process
 - Shorter test application times

Appendix
LFSR Fault Coverage Projection

- **Fault detection probability by a random number**

 \[p(x) \, dx = \text{fraction of detectable faults with detection probability between } x \text{ and } x + dx \]

 \[p(x) \, dx \geq 0 \text{ when } 0 \leq x \leq 1 \]

 \[\int_0^1 p(x) \, dx = 1 \]

- **Exist \(p(x) \, dx \) faults with detection probability \(x \)**

- **Mean coverage of those faults is \(x \, p(x) \, dx \)**

- **Mean fault coverage \(y_n \) of 1st \(n \) vectors:**

 \[
 I(n) = 1 - \left(1 - x\right)^n \int_0^1 p(x) \, dx
 \]

 \[
 I(n) + \frac{1}{n} y_n = 1 \Rightarrow \frac{1}{n} y_n = I(n) \Rightarrow y_n = n \, I(n)
 \]

 \[(15.6) \]

 \[\text{total faults} \]

LFSR Fault Coverage & Vector Length Estimation

- **Random-fault-detection (RFD) variable:**
 - Vector # at which fault first detected
 - \(w_i \) \# faults with RFD variable \(i \)

- **So \(p(x) = \frac{1}{ns} \sum_{i=1}^{N} w_i p_i(x) \)**

- \(ns \leq \) size of sample simulated; \(N \) # test vectors

- \(w_{Q_i} = ns - \sum_{i=1}^{N} w_i \)

- **Method:**
 - Estimate random first detect variables \(w_i \) from fault simulator using fault sampling
 - Estimate \(I(n) \) using book Equation 15.8
 - Obtain test length by inverting Equation 15.6 & solving numerically
Want LFSR to generate all possible $2^n - 1$ patterns (except the all-0 pattern)

Conditions for this – must have a \textit{primitive polynomial}:

- **Monic** – coefficient of x^n term must be 1
 - Modular LFSR – all D FF’s must right shift through XOR’s from X_0 through X_1, ..., through X_{n-1}, which must feed back directly to X_0
 - Standard LFSR – all D FF’s must right shift directly from X_{n-1} through X_{n-2}, ..., through X_0, which must feed back into X_{n-1} through XORing feedback network

Characteristic polynomial must divide the polynomial $1 + x^k$ for $k = 2^n - 1$, but not for any smaller k value

See Appendix B of book for tables of primitive polynomials

Following is related to aliasing:

- If $p(error) = 0.5$, no difference between behavior of primitive & non-primitive polynomial
- But $p(error)$ is rarely $= 0.5$ In that case, non-primitive polynomial LFSR takes much longer to stabilize with random properties than primitive polynomial LFSR
Aliasing Probability Graph

![Graph showing aliasing probability](image)

Additional MISR Aliasing

- **MISR has more aliasing than LFSR on single PO**
 - Error in CUT output d_j at t_p followed by error in output d_{j+h} at t_{i+h} eliminates any signature error if no feedback tap in MISR between bits Q_j and Q_{j+h}.
Aliasing Theorems

- **Theorem 15.1:** Assuming that each circuit PO d_{ij} has probability p of being in error, and that all outputs d_{ij} are independent, in a k-bit MISR, $P_{al} = 1/(2^k)$, regardless of initial condition of MISR. Not exactly true – true in practice.

- **Theorem 15.2:** Assuming that each PO d_{ij} has probability p_j of being in error, where the p_j probabilities are independent, and that all outputs d_{ij} are independent, in a k-bit MISR, $P_{al} = 1/(2^k)$, regardless of the initial condition.