Crypto Processor Design and Trusted Platform Module

Mohammad Tehranipoor
ECE 4095: Hardware Security & Trust
University of Connecticut
ECE Department

Overview

- Introduction to crypto processors
- Designs of crypto processors
- Performance analysis of cryptographic hardware
- Introduction to Trusted Platform Module
- Attacks on crypto processors and how to defend against them
- Investigate documented attack on crypto processor

What is a Crypto Processor?

- A specialized processor that executes cryptographic algorithms within hardware
- Definition varies, but the standard definition includes:
 - Acceleration of encryption
 - Protection against tampering
 - Intrusion detection
 - Protection of data
 - Secure I/O

Why Crypto Processors?

- Most modern security work is based on either protecting or cracking vulnerabilities in target’s OS
 - Majority of systems use conventional processors, standard OS, and standard communication channels
 - A lot of good work has been done here but may be seen as a dead-end for high security
 - Software isn’t enough to protect system, need physical protection

Why Crypto Processors?

- Motivation for securing processors
 - Protection of IP
 - Algorithms, FPGA config files, etc.
 - Protection of key data where simple storage encryption isn’t enough
 - Prevent exploits in vulnerabilities
 - In ATMs and other high risk applications
- Offer advantages in speed and power consumption
 - Increasing data rates and complexity in security protocols cause s/w implementations to be slow
 - Typically the same software crypto algorithms are implemented in hardware

History of Crypto Processors

- Military applications
 - Nuclear weapons arming, battlefield comms hardware, etc.
- Earliest civilian crypto processor was IBM 3848 (1980s)
 - Used for ATMs and mainframe computers
- Recently, been used in many consumer level goods and applications
 - Smart cards, GSM phone SIM cards, set-top TV boxes, etc.
 - Manufactures can exercise control over aftermarket accessories
 - Game controllers, car electronics, ink cartridges, etc.
- “Trusted Computing” initiative to incorporate “Trusted Platform Module” crypto processors into chips
Design

- Start from the ground up
- Start with secure silicon, meaning must trust your fab
 - No backdoors, no undocumented features, etc.
- Design and program in secure environment and limit access to design info
- Have a strong and reliable key management system

Design Considerations

- Need to consider level of security needed
 - Paranoia, IP protection, protection of sensitive data, protection of legally liable data or financial transactions
- Ground up design may not be practical
 - Expensive, time consuming, may need to conform to commercial communication standards, e.g. TCP/IP
- Ground up design is infeasible for many applications
 - Mobile devices make h/w security difficult/impossible
 - High complexity of modern systems make fully custom hardware impractical

Security Levels and Costs

- Exponential relationship describes security vs. cost
- Low end: vulnerable
 - Microcontrollers using 3DES, AES
 - Keyless entry and RFID devices
- Middle range: hardened security
 - Single-chip ASIC
 - USB tokens, smart cards, TPM
- High end: highest security
 - Multiple chips on protected PCB
 - Hardware Security Modules: ATMs, internet servers

Families of Crypto Processors

- Double encryption
 - Protects programs and data
- Standard processor architecture + dedicated crypto blocks
 - Increased throughput
- FPGA implementation
 - Flexible and allow efficient complex arithmetic operations
- ASIC implementation
 - Fast and low power consumption

Conventional Harvard Processor

- This type of crypto processor protects the programs running and the data
 - Data and addresses are encrypted
- All info is decrypted within the security of the processor and then encrypted again before memory storage or I/O transmission
 - A barrier of encryptors and decryptors stands between the the processing elements, data storage, and I/O elements.

Double Encryption
Processor With Double Encryption

- New Section for key management
 - Keys may be "hardwired" in (externally loadable)
 - Hardwiring in the keys generally allows them to be zeroized
 - Hardwired keys are generally not visible to the outside world under any (reasonable) conditions
- There is both a secure and a non-secure I/O channel
 - The strength of the security in the processor is directly dependent on how well these two channels are isolated
 - The easiest place to attack would be at this point of isolation
 - Results in data transactions being monitored "in the clear"

Processor With Dedicated Crypto Blocks

- Build upon standard processor architectures with the addition of multiple dedicated crypto algorithm blocks
 - Parallel connections to data bus
- Processor instructions are not secure
 - Handle large quantities of encrypted data, but do not need the instructions to be secure
- Ideal for network routers
 - Greatly increase throughput in network applications
 - Multiple cryptographic algorithms

Performance

- Fast and efficient at the cost of flexibility
- Advantages seen with narrow or unusual bit widths
- Components not in standard processors
 - S-box look-up tables
 - Bitwise barrel shifters
 - Hardwired shifts

Crypto Processors implemented in FPGAs

- Used for speeding up cryptographic processing
- Flexibility allows for system evolution
 - Algorithm agility for security protocols
 - A must to become commercially viable
 - Allow complex arithmetic operations that general CPUs cannot perform efficiently
- May be more cost-effective solution than VLSI/ASIC
 - Modifications can be made with ease
Performance of FPGA Crypto Processor
- Emphasized in literature
 - Less common in practice
- Significant improvements over standard processors
 - 500x speedup
 - 50% power reduction
- Strengths
 - Modular arithmetic, bit level manipulation
 - Uncommon length bit-vectors
- Point multiplication performance comparison
 - 66MHz FPGA: 0.36ms
 - 2.6GHz dual-Xeon: 197ms

Performance of Crypto Processor on ASIC
- Optimized ASIC compared to FPGA performance
 - 4x faster
 - 97% area reduction
 - 93% dynamic power reduction
 - May be unrealistic to see these gains
- High volume applications
 - Speed necessary applications
 - e.g. network routers
 - Low power applications
 - e.g. RFID devices

Trusted Platform Module
- TPM is a component on the CPU board that is specifically designed to enhance platform security
 - Crypto processor with a s/w microkernel
 - Securely generates and stores encryption keys, passwords, and digital certificates
- Idea is for one TPM to certify another TPM
 - Can certify both the program and the platform
 - Many different applications
 - e.g. for DRM: A TPM can assure a content vendor it is selling to a true copy of the media player rather than hacked copy

Trusted Platform Module
- Dependent on state of PC
- Services
 - Attestation: Cryptographic reporting of state
 - Sealing: State dependent access to information
- Used for
 - Encrypting and decrypting data
 - Control digital rights management (DRM) access
 - Authenticate users, applications, and computers
- ~250 million units, few applications actually use TPM
 - Customer resistance due to developers locking in more tightly and forcing incompatibility.
 - Due to complexity of managing chip
 - Due to the lack of awareness of its capabilities

Infineon TPM Die

FIB image of TPMs
Attacks

- Early 90s, security was minimal in devices
 - Simple attacks could be performed, such as clock and voltage glitching and UV light
 - Few valuable applications and thus few serious attackers
- Soon enough, the need for security changed
 - Smart cards in pay-TV applications
 - Attackers forging cards or wanting to watch for free
 - Manufacturers introducing security chips for accessory vendors to pay a royalty. Strong incentive for vendors to reverse engineer security chips
- Triggered arms race between attack and defense

Weaknesses are found in implementation
- More vulnerable than the algorithm

Analyze the attack surface
- The set of physical, electrical, and logical interfaces that are exposed to potential attackers

Four classes of attacks
- Invasive
- Non-invasive
- Semi-invasive
- Remote attacks

Invasive Attacks

- Involve direct electrical access to internal components of crypto processor
- Example: drilling into passivation layer and micro probing
- IBM 4758 interior has been exposed

Non-invasive Attacks

- Observing or manipulating device’s operation without breaking through packaging
- Examples:
 - Power analysis of processor and correlating to computations to deduce crypto keys
 - Glitching

Semi-invasive Attacks

- Involve access to the chip’s surface but doesn’t require electrical contact or penetration of passivation layer
- Examples:
 - UV light allows attacker to read memory contents
 - Fault injection attacks
 - Low cost probing workstation using photoflash
 - Light causes transistor to conduct. Then able to set or reset any bit in SRAM

Remote Attacks

- Not necessary to be near chip, just need to intercept encrypted traffic
- Two well known attacks but aren’t specific to crypto processors:
 - Cryptanalysis and protocol analysis
- API analysis: specific to crypto processors
 - Top level s/w that governs its interactions with outside world
 - “an unexpected sequence of transactions which would trick a security module into revealing a secret in a manner contrary to the device’s security policy”
Defenses

- Top of the line crypto processors must be tamper-resistant
 - Tamper sensors, UV protection, etc.
- Tamper/intrusion detection will result in
 - Crypto keys being zeroized
 - Memory erasure
 - Self-destruction of chip
- Top of the line crypto processor greatly diminishes threats from first three classes
 - Many remote attacks are independent of hardware quality
 - Security API designer must be very careful to not allow manipulations

Defense: Full-Size vs. Smart Cards

- Full-size: has many critical advantages
 - Glue logic
 - Large capacitors filter signals from external connections
 - Large enough for tamper-sensing barriers
 - Internal power supply allows constant monitoring
- Smart cards
 - Short in sensor mesh causes self-destruction
 - Unpowered most of time, chip doesn’t know it’s being tampered with
 - Glue logic

Questions?

References