2.34 Small differences in gas pressures are commonly measured with a micromanometer of the type illustrated in Fig. P2.34. This device consists of two large reservoirs each having a cross-sectional area, A_1, which are filled with a liquid having a specific weight, γ_1, and connected by a U-tube of cross-sectional area, A_2, containing a liquid of specific weight, γ_2. When a differential gas pressure, $p_1 - p_2$, is applied a differential reading, h, develops. It is desired to have this reading sufficiently large (so that it can be easily read) for small pressure differentials. Determine the relationship between h and $p_1 - p_2$ when the area ratio A_1/A_2 is small, and show that the differential reading, h, can be magnified by making the difference in specific weights, $\gamma_2 - \gamma_1$, small. Assume that initially (with $p_1 = p_2$) the fluid levels in the two reservoirs are equal.

![Diagram of micromanometer](image)

When a differential pressure, $p_1 - p_2$, is applied we assume that level in left reservoir drops by a distance, Δh, and right level rises by Δh. Thus, the manometer equation becomes

$$p_1 + \gamma_1 (h_1 + h - \Delta h) - \gamma_2 h - \gamma_1 (h_1 + \Delta h) = p_2$$

or

$$p_1 - p_2 = \gamma_2 h - \gamma_1 h + \gamma_1 (2 \Delta h)$$

(1)

Since the liquids in the manometer are incompressible,

$$\Delta h / A_2 = h / A_2 \text{ or } 2 \Delta h = h / A_2$$

and if h / A_2 is small then $2 \Delta h \ll h$ and last term in Eq.(1) can be neglected. Thus,

$$p_1 - p_2 = (\gamma_2 - \gamma_1) h$$

or

$$h = \frac{p_1 - p_2}{\gamma_2 - \gamma_1}$$

and large values of h can be obtained for small pressure differentials if $\gamma_2 - \gamma_1$ is small.
2.36 Determine the elevation difference, Δh, between the water levels in the two open tanks shown in Fig. P2.36.

\[
p_1 - \gamma_{H_2O} h + (5G) \gamma_{H_2O} (0.4\text{m}) + \gamma_{H_2O} (h - 0.4\text{m}) + \gamma_{H_2O} (\Delta h) = p_2
\]

Since $p_1 = p_2 = 0$

\[
\Delta h = 0.4\text{m} - (0.9)(0.4\text{m}) = 0.040\text{m}
\]

2.37 For the configuration shown in Fig. P2.37 what must be the value of the specific weight of the unknown fluid? Express your answer in lb/ft3.

Let γ be specific weight of unknown fluid. Then,

\[
\gamma_{H_2O} \left[\frac{(5.5-1.4)}{1.2} \text{ ft} \right] - \gamma \left[\frac{(3.3-1.4)}{1.2} \text{ ft} \right] - \gamma_{H_2O} \left[\frac{(4.9-3.3)}{1.2} \text{ ft} \right] = 0
\]

and

\[
\gamma = \frac{\gamma_{H_2O} \left[(5.5-1.4) - (4.9-3.3) \right] \text{ in.}}{(3.3-1.4) \text{ in.}} = \left(62.4 \frac{\text{lb}}{\text{ft}^3} \right) \left(\frac{4.1 - 1.6}{1.9} \right)
\]

\[
= 82.1 \frac{\text{lb}}{\text{ft}^3}
\]
2.45 Determine the new differential reading along the inclined leg of the mercury manometer of Fig. P2.45, if the pressure in pipe A is decreased 10 kPa and the pressure in pipe B remains unchanged. The fluid in A has a specific gravity of 0.9 and the fluid in B is water.

For the initial configuration:

\[P_A + \gamma_A (0.1) + \gamma_Hg (0.05 \sin 30^\circ) - \gamma_{H2O} (0.08) = P_B \]
\[(1) \]

Where all lengths are in m. When \(P_A \) decreases left column moves up a distance \(a \), and right column moves down a distance \(a \), as shown in figure. For the final configuration:

\[P_A' + \gamma_A (0.1 - a \sin 30^\circ) + \gamma_Hg (a \sin 30^\circ + 0.05 \sin 30^\circ + a) - \gamma_{H2O} (0.08 + a) = P_B \]
\[(2) \]

Where \(P_A' \) is the new pressure in pipe A.

Subtract Eq. (2) from Eq. (1) to obtain:

\[P_A - P_A' + \gamma_A (a \sin 30^\circ) - \gamma_Hg (a \sin 30^\circ + 1) + \gamma_{H2O} (a) = 0 \]

Thus,

\[a = \frac{- (P_A - P_A')}{\gamma_A \sin 30^\circ - \gamma_Hg (a \sin 30^\circ + 1) + \gamma_{H2O}} \]

For \(P_A - P_A' = 10 \) kPa

\[a = \frac{-10 \text{ kN/m}^2}{(0.9)(9.81 \text{ kN/m}^2)(0.5) - (133 \text{ kN/m}^2)(0.5 + 1) + 9.86 \text{ kN/m}^2} \]

\[= 0.0540 \text{ m} \]

New differential reading, \(\Delta h \), measured along inclined tube is equal to

\[\Delta h = \frac{a}{\sin 30^\circ} + 0.05 + a \]
\[= \frac{0.0540 \text{ m}}{0.5} + 0.05 + a + 0.0540 \text{ m} = 0.212 \text{ m} \]

2-39
2.68 The massless, 4-ft-wide gate shown in Fig. P.2.68 pivots about the frictionless hinge O. It is held in place by the 2000 lb counterweight, W. Determine the water depth, \(h \).

\[
F_R = \gamma h_c A \quad \text{where} \quad h_c = \frac{h}{2}
\]

Thus,

\[
F_R = \gamma h_c \frac{h}{2} \left(h \times b \right)
\]

\[
= \gamma h_c \frac{h^2}{2} \left(\frac{4}{ft} \right)
\]

To locate \(R \),

\[
y_R = \frac{\sum M_o}{2} = \frac{1}{2} \left(\frac{4}{ft} \right) \left(\frac{h}{2} \right)^2 + \frac{h}{2}
\]

\[
= \frac{2}{3} h
\]

For equilibrium,

\[
\sum M_o = 0
\]

\[
F_R d = W (3 \text{ ft}) \quad \text{where} \quad d = h - y_R = \frac{h}{3}
\]

so that

\[
\frac{h}{3} = \frac{(2000 \text{ lb})(3 \text{ ft})}{\gamma h_c \frac{h^2}{2} \left(\frac{4}{ft} \right)}
\]

Thus,

\[
h = \frac{3(2000 \text{ lb})(3 \text{ ft})}{(62.4 \text{ lb/ft}^3) \frac{h^2}{2} \left(\frac{4}{ft} \right)}
\]

\[
h = 5.24 \text{ ft}
\]
2.70 An open tank has a vertical partition and on one side contains gasoline with a density \(\rho = 700 \text{ kg/m}^3 \) at a depth of 4 m, as shown in Fig. P2.70. A rectangular gate that is 4 m high and 2 m wide and hinged at one end is located in the partition. Water is slowly added to the empty side of the tank. At what depth, \(h \), will the gate start to open?

\[
F_{R_g} = \gamma_g h_g A_g
\]
where \(\gamma_g \) refers to gasoline.

\[
F_{R_g} = \left(700 \text{ kg/m}^3\right)\left(9.81 \text{ m/s}^2\right)\left(2 \text{ m}\right)\left(4 \text{ m} \times 2 \text{ m}\right)
= 110 \times 10^3 \text{ N} = 110 \text{ kN}
\]

\[
F_{R_w} = \gamma_w h_w A_w
\]
where \(\gamma_w \) refers to water.

\[
F_{R_w} = \left(9.80 \times 10^3 \text{ N/m}^3\right)\left(h_2/2\right)\left(2 \text{ m} \times h_2\right)
\]
where \(h_2 \) is depth of water.

\[
F_{R_w} = (9.80 \times 10^3) h_2^2
\]

For equilibrium,

\[
\sum M_H = 0
\]
so that

\[
F_{R_w} l_w = F_{R_g} l_g \quad \text{with} \quad l_w = \frac{h}{3} \quad \text{and} \quad l_g = \frac{4}{3} \text{ m}
\]

Thus,

\[
(9.80 \times 10^3)(h_2^2)(\frac{h}{3}) = (110 \times 10^3 \text{ N})(\frac{4}{3} \text{ m})
\]
and

\[
h = \frac{3.55 \text{ m}}{}
\]
which is the limiting value for \(h \).