1. There are \sqrt{n} copies of an element in the array c. Every other element of c occurs exactly once. If the algorithm RepeatedElement is used to identify the repeated element of c, will the run time still be $\tilde{O}(\log n)$? If so, why? If not, what is the new run time?

2. Let \mathcal{A} be a Monte Carlo algorithm that solves a decision problem π in time T. The output of \mathcal{A} is correct with probability c, c being a constant greater than $1/2$. Show how you can modify \mathcal{A} so that its answer is correct with high probability. The modified version can take $O(T \log n)$ time.

3. In an infinite array, the first n cells contain integers in sorted order and the rest of the cells are filled with ∞. Present an algorithm that takes x as input and finds the position of x in the array in $\Theta(\log n)$ time. You are not given the value of n.

4. Find an efficient data structure for representing a subset S of the integers from 1 to n. Operations we wish to perform on the set are

 - $\text{INSERT}(i)$ to insert the integer i to the set S. If i is already in the set, this instruction must be ignored.
 - DELETE to delete an arbitrary member from the set.
 - $\text{MEMBER}(i)$ to check whether i is a member of the set.

Your data structure should enable each one of the above operations in constant time (irrespective of the cardinality of S).

5. Input is a sequence X of n keys with many duplications such that the number of distinct keys is d (< n). Present an $O(n \log d)$-time sorting algorithm for this input. (For example, if $X = 5, 6, 1, 18, 6, 4, 4, 1, 5, 17$, the number of distinct keys in X is six.)

6. Input is an array of n arbitrary real numbers (where n is odd). The array has $(n + 1)/2$ distinct numbers such that each number has exactly two copies excepting for one number. Present an $O(n)$ time algorithm to identify the unique number.

7. Input is a (not necessarily sorted) sequence $S = k_1, k_2, \ldots, k_n$ of n arbitrary numbers. Consider the collection C of n^2 numbers of the form $\min\{k_i, k_j\}$, for $1 \leq i, j \leq n$. Present an $O(n)$-time and $O(n)$-space algorithm to find the median of C.

8. Two sets A and B have n elements each. Assume that each element is an integer in the range $[0, n^{100}]$. These sets are not necessarily sorted. Show how to check whether these two sets are disjoint in $O(n)$ time. Your algorithm should use $O(n)$ space.