Course Syllabus (Tentative time frame for each section in parenthesis)

1. **Introduction to Fuel Cells** (Week 1- W,F):
 i. Brief history of fuel cells
 ii. Operating principles
 iii. Differences between electrochemical and chemical energy conversion
 iv. Types of fuel cells (with an emphasis on PEMFC and DMFC technology)
 v. Applications
 vi. Current state of the art
 vii. Limitations and principle research areas (addressing limitations)

2. **Fuel Cell Thermodynamics** (Week 2):
 i. Brief review of first and second law of thermodynamics
 ii. Application of the first and second law to fuel cells
 iii. Significance of the Gibbs free energy
 iv. Concept of chemical potential and emf
 v. Derivation of the Nernst equation
 vi. Fuel cell efficiencies, comparison with Carnot efficiencies
 vii. Thermodynamic advantage of electrochemical energy conversion

3. **Some Concepts of Electrochemistry** (Week 3):
 i. Brief review of electrochemical concepts
 ii. Electrochemical cells, oxidation and reduction processes
 iii. Half cell potentials and the electrochemical series
 iv. Faraday’s law, faradaic and nonfaradaic processes
 v. Important factors involved in faradaic processes
 vi. Current and reaction rate
 vii. Polarization and overpotential
 viii. Cell resistance
 ix. Mass transport in electrochemical cells
 x. Important electrochemical experiments (linear sweep voltammetry, cyclic voltammetry)

4. **Electrode Kinetics** (Week 4):
 i. Requirements of kinetic theories
 ii. The Arrhenius equation
 iii. Equilibrium and electrode reactions – the Nernst equation
 iv. Current - potential dependency – the Tafel equation
 v. The Butler – Volmer theory for electrode kinetics
 vi. The intrinsic (standard) rate constant and the transfer coefficient
 vii. The exchange current
viii. The current - overpotential equation – limiting cases, Tafel and exchange current plots
ix. Mass transport effects

5. Irreversibility and Sources of Overpotential (Week 5):
 i. Irreversibility in the working fuel cell
 ii. Ideal current – voltage relationship in fuel cells
 iii. Sources of overpotential, discussion of various overpotentials:
 a. Activation polarization
 b. Ohmic polarization
 c. Concentration polarization
 iv. Actual current – voltage relationship – the polarization curve - simplified mathematical treatment
 v. Estimating the contribution of individual overpotentials – mathematical treatment
 vi. Temperature and pressure effects

6. Fuel Cell Electrolytes – the ionomeric membrane (Week 6):
 i. Different fuel cell technologies – electrolytes used
 ii. The ionomeric membrane in a PEM fuel cell
 iii. Properties (requirements) of ionomeric membranes
 iv. Mechanisms of proton transport in ionomeric membranes
 v. Water content and transport in ionomeric membranes
 vi. Relationship between proton conductivity and membrane water content
 vii. Ionomer in the electrode layers – the membrane electrode interface

7. Fuel Cell Electrocatalysis (Emphasis on PEMs) (Weeks 7, 8):
 i. Different fuel cell technologies – catalysts used
 ii. Hydrogen oxidation (anode) electrocatalysis in a PEM Cell
 iii. Effect of impurities on anode electrocatalysis in a PEM Cell
 iv. Oxygen reduction (cathode) electrocatalysis in a PEM Cell
 v. Electrocatalysts used at the anode and cathode in a PEM Cell – supported and unsupported catalysts
 vi. The electrode structure – importance of three phase contact
 vii. Half cell experiments to estimate catalytic activity – Voltammetry
 viii. Full cell experiments to determine cathode catalytic activity and anode polarizazion – Voltammetry
 ix. Arriving at an optimal electrode structure – parameters to be evaluated

8. The Membrane Electrode Assembly (MEA) (Week 9):
 i. Catalysts applied directly to membrane
 ii. Catalysts applied as a gas diffusion electrode
iii. Heat treatment
iv. Merits and demerits of above approaches
v. Improving interfacial stability and MEA endurance – alternate fabrication techniques

9. The Gas Diffusion Layer (GDL) and Flowfields (Week 10):
 i. Need for GDLs
 ii. Properties of a good GDL
 iii. Carbon paper and modified GDLs
 iv. Different types of flowfields
 v. Pressure drop, convection and diffusion of reactant gases

10. The Complete Picture (Week 11):
 i. Integration of individual components of the MEA
 ii. Fuel cell stacks
 iii. Fuel processing systems – a review
 iv. Humidification
 v. Inverters – converting DC to AC
 vi. Cogeneration
 vii. Limitations of existing technology:
 a. Fuel contamination (CO poisoning)
 b. Water management
 c. System complexity
 d. Cost
 viii. Approaches to improve technology

11. High Temperature PEMFC Operation (Week 12):
 i. Relationship between temperature and humidity
 ii. Rationale for high temperature, low relative humidity operation – emphasis on improved CO tolerance and easier water management
 iii. Perceived advantages of high temperature operation
 iv. Technical limitations – dehydration of ionomeric membrane
 v. Approaches adopted to overcome limitations – composite membranes, improved electrode and GDL structures
 vi. Current research areas and opportunities

12. Direct Methanol Operation (Week 13):
 i. Rationale – simplified fuel processing system
 ii. Mechanism of methanol electrooxidation
 iii. Similarity between CO poisoning and methanol electrooxidation
 iv. Approaches to improve methanol electrooxidation kinetics
 v. Methanol crossover
vi. Approaches to reduce methanol crossover – blended membranes, layered membranes, composite membranes
vii. Current research areas and opportunities

13. **PEMFC / DMFC Applications** (Week 14):

 i. In automobiles
 ii. For stationary power
 iii. For mobile units (such as cellular phones)

Proposed Evaluation Scheme

1. Laboratory reports, homework and assignments: 50%
2. Midterm Examination: 25%
3. Final Examination (or term paper): 25%