Homework 2
Due September 23rd

1. Problem 3.2 from book

```c
float xmin = 1.0;
float lastxmin;

while ( xmin > 0 ) {
    lastxmin = xmin;
    xmin = xmin/2;
}

xmin = lastxmin;
printf ("The smallest number is %g\n", xmin);
```

On my PowerPC Mac, for single-precision floats I get 1.4013×10^{-45} which is equal to 2^{-150}, and for double-precision I get 4.94066×10^{-324} which is equal 2^{-1074}. I get the same answers on Fester, a Pentium-IV machine.

2. Problem 3.8 from book
a) $y = x^3 - 5x^2 + 6x + 0.55$

 $$
 = (2.73)^3 - 5(2.73)^2 + 6(2.73) + 0.55
 = 20.3 - 37.2 + 16.3 + 0.55
 = -0.05
 $$

 True value is 0.011917, so the error is $(-0.05 - 0.011917)/0.011917 = 519\%$

b) $y = [(x - 5)x + 6]x + 0.55$

 $$
 = [(2.73 - 5)2.73 + 6]2.73 + 0.55
 = [(-2.27)2.73 + 6]2.73 + 0.55
 = [-6.19 + 6]2.73 + 0.55
 = [-0.19]2.73 + 0.55
 = -.518 + 0.55
 = 0.032
 $$

 Error is $(0.032 - 0.011917)/0.011917 = 168\%$.
 The error is significantly reduced by rearranging the equation so that there are no high order terms
3. Problem 3.10 from book

```c
{ 
    double pi = 3.14159265359;
    double es = 0.5e-08;
    double fact = 1;
    int j = 1;
    double x = 2*pi;
    double term = 1;
    double cosx = term;

    printf("j=%d   cos(x)= %0.10f\n", j, cosx);

    for ( j=2; j<100; j++ ) {
        double ea, newcosx;

        fact = fact*(2*j-3)*(2*j-2);
        term = (-term) * x * x;

        newcosx = cosx + term/fact;
        ea = (newcosx-cosx)/newcosx;
        cosx = newcosx;

        printf("j=%d   cos(x)= %0.10f, ea=%.10f%%\n", j, cosx, ea*100);
        if ( (ea < 0 && (-ea) < es) || (ea > 0 && ea < es) )
            break;
    }
}
```

j=1	cos(x)= 1.0000000000
j=2	cos(x)= -18.7392088022, ea=105.3364045972%
j=3	cos(x)= 46.2001852205, ea=140.5608954006%
j=4	cos(x)= -39.2566319862, ea=217.6875928549%
j=5	cos(x)= 20.9880093857, ea=287.0431409898%
j=6	cos(x)= -5.4382473977, ea=485.9333320241%
j=7	cos(x)= 2.4652889736, ea=320.5926954570%
j=8	cos(x)= -0.7508982625, ea=228.3119826805%
j=9	cos(x)= 1.0329042310, ea=27.3022377096%
j=10	cos(x)= 0.9965213898, ea=3.6509844659%
j=11	cos(x)= 1.0000013329, ea=0.3778695967%
j=12	cos(x)= 0.9999782330, ea=0.0322998098%
j=13	cos(x)= 1.0000001332, ea=0.0023099926%
j=14	cos(x)= 0.9999999299, ea=0.0001403000%
j=15	cos(x)= 1.0000000032, ea=0.0000073265%
j=16	cos(x)= 0.9999999999, ea=0.0000003325%

4. Problem 4.6 from book

\[f(x) = 25x^3 - 6x^2 + 7x - 88 \]
\[f'(x) = 75x^2 - 12x + 7 \]

True value of \(f'(2) \) is 283.
Forward-difference

\[f'(2) = \frac{f(2 + .25) - f(2)}{.25} = \frac{182.14 - 102}{.25} = 320.5625 \]

\[\epsilon_i = \left| \frac{283 - 320.5625}{283} \right| = 13.3\% \]

Backward-difference

\[f'(2) = \frac{f(2) - f(2-.25)}{.25} = \frac{39.859 - 102}{.25} = 248.5625 \]

\[\epsilon_i = \left| \frac{283 - 248.5625}{283} \right| = 12.2\% \]

Centered-difference

\[f'(2) = \frac{f(2 + .25) - f(2 -.25)}{2(.25)} = \frac{182.14 - 39.859}{2(.25)} = 284.5625 \]

\[\epsilon_i = \left| \frac{283 - 284.5625}{283} \right| = 0.55\% \]

The expected error for the forward and backward difference methods is the Taylor Series remainder:

\[f''(2) \left(0.25\right)\frac{1}{2!} = \frac{150(2) - 12(0.25)}{2} = 36. \]

The actual absolute errors are 80.14 and 62.141. The expected error for the centered-difference method is

\[-\frac{f^{(3)}(2)}{3!}(0.25)^2 = -\frac{150}{6}(0.25)^2 = -1.5625 \]

which matches the actual absolute error.
5. Problem 4.10 from book

\[
\Delta H(\tilde{T}) = \left| \frac{\partial H}{\partial \tilde{T}} \right| \Delta \tilde{T} \\
= 4 Ae \sigma T^3 \Delta \tilde{T} \\
= \left| 4(0.15)(0.90)(5.67e - 8)(650)^3 \right| (25) \\
= 210.21
\]

Exact error

\[
\Delta H_{\text{exact}} = \frac{H(675) - H(625)}{2} \\
= \frac{(0.15)(0.90)(5.67e - 8)(675)^4 - (0.15)(0.90)(5.67e - 8)(625)^4}{2} \\
= \frac{1589 - 1168}{2} \\
= 210.52
\]

The estimated error is very close to the exact error.

With \(\Delta T=50\):

\[
\Delta H(\tilde{T}) = \left| \frac{\partial H}{\partial \tilde{T}} \right| \Delta \tilde{T} \\
= 4 Ae \sigma T^3 \Delta \tilde{T} \\
= \left| 4(0.15)(0.90)(5.67e - 8)(650)^3 \right| (50) \\
= 420.42
\]

Exact error

\[
\Delta H_{\text{exact}} = \frac{H(700) - H(600)}{2} \\
= \frac{(0.15)(0.90)(5.67e - 8)(700)^4 - (0.15)(0.90)(5.67e - 8)(600)^4}{2} \\
= \frac{1838 - 992}{2} \\
= 422.9
\]

Again, the estimated error is very close to the exact error.

The estimated errors are very close to the exact error because the function is nearly linear around \(T=650\).
6. The following is an algorithm to calculate \(e^x \) using a Taylor Series expansion.

\[
\begin{align*}
e_x & = 1 \\
\text{for } i=1 \text{ to } n \text{ do } \\
& \quad \text{nfact} = 1 \\
& \quad \text{xpower} = 1 \\
& \quad \text{for } j = 1 \text{ to } i \text{ do } \\
& \quad \quad \text{nfact} = \text{nfact} \times j \\
& \quad \quad \text{xpower} = \text{xpower} \times x \\
& \quad \text{endfor} \\
& \quad e_x = e_x + \text{xpower}/\text{nfact} \\
\text{endfor}
\end{align*}
\]

a. What is the order of growth of this algorithm relative to \(n \)?

The order of growth of this algorithm is determined by the number of operations in the algorithm. The number of multiplications \(= \sum_{i=1}^{n} 2i = n(n + 1) \), and the number of divisions is \(n \). Put them together, the overall growth is therefore \(O(n^2) \).

b. Can this algorithm be rewritten to have a lower order of growth? If so, show the new algorithm and compute its order of growth.

\[
\begin{align*}
nfact & = 1 \\
xpower & = 1 \\
e_x & = 1 \\
\text{for } i=1 \text{ to } n \text{ do } \\
& \quad \text{nfact} = \text{nfact} \times i \\
& \quad \text{xpower} = \text{xpower} \times x \\
& \quad e_x = e_x + \text{xpower}/\text{nfact} \\
\text{endfor}
\end{align*}
\]

The number of multiplications \(= 2n \), and the number of divisions is \(n \). Put them together, the overall growth is therefore \(O(n) \).