4-51 \[\Sigma M_0 = 0 = 6 F_{AC} - 11(100) \quad \Rightarrow \quad F_{AC} = 183.3 \text{ lbf} \]

The deflection at point \(A \) in the negative \(y \) direction is equal to the elongation of the rod \(AC \). From Table A-5, \(E_s = 30 \text{ Mpsi} \).

\[y_A = \left(\frac{FL}{AE} \right)_{AC} = \frac{183.3(12)}{\pi \left(\frac{0.5^2}{4} \right) 30(10^6)} = -3.735 \left(10^{-4} \right) \text{ in} \]

By similar triangles the deflection at \(B \) due to the elongation of the rod \(AC \) is

\[\frac{y_A}{6} = \frac{y_B}{18} \quad \Rightarrow \quad y_B = 3y_A = 3(-3.735)10^{-4} = -0.00112 \text{ in} \]

From Table A-5, \(E_a = 10.4 \text{ Mpsi} \)

The bar can then be treated as a simply supported beam with an overhang \(AB \). From Table A-9, beam 10

\[y_B = y_{B1} + y_{B2} = y_{B1} \]

\[y_{B1} = \left(\frac{BD}{6} \right) \left(\frac{\frac{\partial y_{BC}}{\partial x}}{\frac{\partial x}{\partial x}} \right)_{x_{wl+a}} \frac{Fa^2}{3EI} (l + a) = \frac{d}{dx} \left(\frac{F(x-l)}{6EI} (x-l)^2 - a(x-l) \right)_{x_{wl+a}} \frac{Fa^2}{3EI} (l + a) = \frac{7Fa^2}{6EI} (2l+3a) - \frac{Fa^2}{3EI} (l + a) \]

\[= \frac{7(100)5}{6(10.4)10^6 \left(\frac{0.25(2^2)}{12} \right)} [2(6)+3(5)] - \frac{100 \left(\frac{5^2}{3(10.4)10^6 \left(\frac{0.25(2^2)}{12} \right)} \right) (6+5)} = -0.01438 \text{ in} \]

\[y_B = y_{B1} + y_{B2} = -0.00112 - 0.01438 = -0.0155 \text{ in} \quad \text{Ans.} \]
\[I = \pi (0.5^4)/64 = 3.068 \, (10^{-3}) \, \text{in}^4, \quad J = 2 \, I = 6.136 \, (10^{-3}) \, \text{in}^4, \quad A = \pi (0.5^2)/4 = 0.1963 \, \text{in}^2. \]

Consider \(x \) to be in the direction of \(OA \), \(y \) vertically upward, and \(z \) in the direction of \(AB \). Resolve the force \(F \) into components in the \(x \) and \(y \) directions obtaining 0.6 \(F \) in the horizontal direction and 0.8 \(F \) in the negative vertical direction. The 0.6 \(F \) force creates strain energy in the form of bending in \(AB \) and \(OA \), and tension in \(OA \). The 0.8 \(F \) force creates strain energy in the form of bending in \(AB \) and \(OA \), and torsion in \(OA \). Use the dummy variable \(\bar{x} \) to originate at the end where the loads are applied on each segment,

\[
0.6 \, F: \quad \begin{align*}
AB & \quad M = 0.6 \, F \, \bar{x} & \frac{\partial M}{\partial F} &= 0.6 \, \bar{x} \\
OA & \quad M = 4.2 \, F & \frac{\partial M}{\partial F} &= 4.2 \\
F_0 &= 0.6 \, F & \frac{\partial F_0}{\partial F} &= 0.6
\end{align*}
\]

\[
0.8 \, F: \quad \begin{align*}
AB & \quad M = 0.8 \, F \, \bar{x} & \frac{\partial M}{\partial F} &= 0.8 \, \bar{x} \\
OA & \quad M = 0.8 \, F \, \bar{x} & \frac{\partial M}{\partial F} &= 0.8 \, \bar{x} \\
T &= 5.6 \, F & \frac{\partial T}{\partial F} &= 5.6
\end{align*}
\]

Once the derivatives are taken the value of \(F = 15 \, \text{lbf} \) can be substituted in. The deflection of \(B \) in the direction of \(F \) is

\[
(\delta_a)_F = \frac{\partial U}{\partial F} = \left(\frac{F_0 L}{AE} \right)_{OA} \frac{\partial F_0}{\partial F} + \left(\frac{TL}{JG} \right)_{OA} \frac{\partial T}{\partial F} + \frac{1}{EI} \sum \int M \frac{\partial M}{\partial F} \, d\bar{x}
\]

\[
= \frac{0.6(15)15}{0.1963(30)10^6(0.6)} + \frac{5.6(15)15}{6.136(10^{-3})11.5(10^6)(5.6)}
\]

\[
+ \frac{15}{30(10^6)3.068(10^{-3})} \int_0^7 (0.6\bar{x})^2 \, d\bar{x} + \frac{15(4.2^2)}{30(10^6)3.068(10^{-3})} \int_0^7 d\bar{x}
\]

\[
+ \frac{15}{30(10^6)3.068(10^{-3})} \int_0^7 (0.8\bar{x})^2 \, d\bar{x} + \frac{15}{30(10^6)3.068(10^{-3})} \int_0^7 (0.8\bar{x})^2 \, d\bar{x}
\]

\[
= 1.38(10^{-5}) + 0.1000 + 6.71(10^{-3}) + 0.0431 + 0.0119 + 0.1173
\]

\[
= 0.279 \, \text{in.} \quad \text{Ans.}
\]
*Note. This is not the actual deflection of point B. For this, dummy forces must be placed on B in the x, y, and z directions. Determine the energy due to each, take derivatives, and then substitute the values of $F_x = 9$ lbf, $F_y = -12$ lbf, and $F_z = 0$. This can be done separately and then use superposition. The actual deflections of B are

$$\delta_B = 0.0831 \, i - 0.2862 \, j - 0.00770 \, k \, \text{ in}$$

From this, the deflection of B in the direction of F is

$$ (\delta_B)_F = 0.6(0.0831) + 0.8(0.2862) = 0.279 \, \text{ in}$$

which agrees with our result.
1. Choose R_B as redundant reaction.

2. Statics. $R_C = wl - R_B \quad (1)$

\[
M_C = \frac{1}{2}wl^2 - R_B (l - a) \quad (2)
\]

3. Deflection equation for point B. Superposition of beams 2 and 3 of Table A-9,

\[
y_B = \frac{R_B (l - a)^3}{3EI} + \frac{w(l - a)^2}{24EI} \left[4l(l - a) - (l - a)^2 - 6l^2 \right] = 0
\]

4. Solving for R_B.

\[
R_B = \frac{w}{8(l - a)} \left[6l^2 - 4l(l - a) + (l - a)^2 \right]
\]

\[
= \frac{w}{8(l - a)} \left(3l^2 + 2al + a^2 \right) \quad \text{Ans.}
\]

Substituting this into Eqs. (1) and (2) gives

\[
R_C = wl - R_B = \frac{w}{8(l - a)} \left(5l^2 - 10al - a^2 \right) \quad \text{Ans.}
\]

\[
M_C = \frac{1}{2}wl^2 - R_B (l - a) = \frac{w}{8} \left(l^2 - 2al - a^2 \right) \quad \text{Ans.}
\]