PROBLEM 6.122

Air in a piston-cylinder assembly is compressed isentropically from $T_1 = 60^\circ F$, $p_1 = 20$ lbf/in2 to $p_2 = 2000$ lbf/in2. Assuming the ideal gas model, determine the temperature at state 2, in °F, using (a) data from Table A-22E, and (b) a constant specific heat ratio, $k = 1.4$. Compare the values obtained in parts (a) and (b) and comment.

ENGINEER MODEL

1. The air is the closed system.
2. The air undergoes an isentropic process.
3. The air is modeled as an ideal gas.

(a) \[\frac{p_2}{p_1} = \frac{P_r(2)}{P_r(1)} \Rightarrow P_r(2) = P_r(1) \left(\frac{121.4/7}{30} \right) = 121.47 \text{ lbf/in}^2 \]

Interpolating in Table A-22E gives, $T_2 = 1828$ °R

(b) With Eq. 6.48,

\[T_2 = T_1 \left(\frac{p_2}{p_1} \right)^{k-1} = 520 \text{ °R} \left(\frac{121.47}{30} \right)^{0.4} = 1938 \text{ °R} \]

The value obtained in part (b) is about 6% greater than in part (a).

The approach in part (a) accounts for the variation of specific heats with temperature whereas the approach in part (b) does not.

PROBLEM 6.123

Air in a piston-cylinder assembly is compressed isentropically from state 1, where $T_1 = 35^\circ C$, to state 2, where the specific volume is one-tenth of the specific volume at state 1. Applying the ideal gas model with $k = 1.4$, determine (a) T_2, in °C and (b) the work, in kJ/kg.

ENGINEER MODEL

1. The air is the closed system.
2. The air undergoes an isentropic process.
3. The air is modeled as an ideal gas with $k = 1.4$.
4. Kinetic and potential energy play no role.

ANALYSIS

(a) With Eq. 6.49,

\[T_2 = T_1 \left(\frac{V_2}{V_1} \right)^{k-1} = (308.15 \text{ K}) \left(\frac{1}{10} \right)^{0.4} = 774.07 \text{ K} \ (500.9^\circ \text{ C}) \]

(b) Reducing an energy balance for the adiabatic process,

\[\Delta U + \Delta E = 0 \Rightarrow W = -\Delta U = -mc_v(T_2 - T_1) \]

From Eq. 3.47, $c_v = R/(k-1)$. So

\[W = -\frac{R}{(k-1)} \left(T_2 - T_1 \right) = \frac{1.4}{2.73} \left(308.15 - 774.07 \right) \frac{\text{kJ}}{\text{kJ}} = -33.43 \frac{\text{kJ}}{\text{kJ}} \]