Universal Composition

Hong-Sheng Zhou

CryptoDRM Lab
Computer Science and Engineering
University of Connecticut
Outline

• Review
• Key-Exchange
• Signature
Traditional Simulation-based Paradigm

- **REAL**
 - **adversary A**
 - ρ-protocol interaction

- **IDEAL**
 - **adversary S**
 - Trusted party implementing a functionality F
Alternative presentation

ρ-protocol interaction

REAL

IDEAL
UC Security

ρ-protocol interaction
UC Security

We say a protocol ρ UC realizes functionality F if for every real-world adversary A, there exists an ideal-world adversary S, such that no environment Z can distinguish between a real execution with A and an ideal execution with S.
Hybrid vs. Ideal

Protocol ρ in the G hybrid world
UC realizes functionality F
Protocol ρ in the G hybrid world, UC realizes functionality F.

Protocol π^p in the G hybrid world, UC realizes functionality H.

Protocol π in the F hybrid world, UC realizes functionality H.
Composition Theorem

Let \mathcal{G}, \mathcal{F} be ideal functionalities. Let π be a multi-party protocol in the \mathcal{F}-hybrid world, and let ρ be a multi-party protocol that UC realizes \mathcal{F} in the \mathcal{G}-hybrid world. Then for any adversary A in the \mathcal{G}-hybrid world there exists an adversary S in the \mathcal{F}-hybrid world such that for any environment machine Z we have: $\text{EXEC}^G_{\pi, A, Z} \approx \text{EXEC}^F_{\pi, S, Z}$
More on Corruption

Recall: UC Security

REAL

IDEAL

ρ-protocol interaction
More on Corruption

• Adaptive vs. Static
 – Adaptive: Parties could be corrupted throughout the computation;
 – Static: Parties are corrupted at the beginning;

• Active vs. Passive
 – Active: Corrupted parties operate arbitrarily; malicious;
 – Passive: Corrupted parties still need to follow the protocol specification; honest-but-curious;

• Non-erasure vs. Erasure
 – Non-erasure: once corrupted, the adversary is allowed to access to all pervious internals;
 – Erasure: once corrupted, the adversary is only allowed to access to the current internals; some of the internals could be erased by the parties when they are honest based on the protocol specification;
More on Corruption

- Adaptive vs. Static
- Active vs. Passive
- Non-erasure vs. Erasure

- Realistic Corruption = Adaptive + Active + Non-erasure
- In the UC Key-Exchange which will be investigated below, we consider a slight weaker corruption, i.e. Adaptive+Active+Erasure
Outline

• Review
• Key-Exchange
• Signature
Outline

• Review
• Key-Exchange
• Signature
The authenticated message transmission functionality, F_{AUTH}

<table>
<thead>
<tr>
<th>Functionality F_{AUTH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Upon receiving an input $(\text{Send}, \text{sid}, m)$ from party S, do: If $\text{sid} = (S, R, \text{sid}')$ for some R, then generate a public delayed output $(\text{Sent}, \text{sid}, m)$ to R and halt. Else ignore the input.</td>
</tr>
<tr>
<td>2. Upon receiving $(\text{Corrupt-sender}, \text{sid}, m')$ from the adversary, and if the $(\text{Sent}, \text{sid}, m)$ output is not yet delivered to R, then output $(\text{Sent}, \text{sid}, m')$ to R and halt.</td>
</tr>
</tbody>
</table>
The Key-Exchange functionality, F_{KE}

1. Upon receiving an input $(\text{Establish-Key}, \text{sid})$ from party I, verify that $\text{sid} = (I, R, \text{sid'})$ for some identity R, record I as active, record R as the responder, and send a public delayed output $(\text{Establish-Key}, \text{sid})$ to R.

2. Upon receiving $(\text{Establish-Key}, \text{sid})$ from party R, verify that R is recorded as the responder, and record R as active, then notify the adversary.
The Key-Exchange functionality, F_{KE}

Functionality F_{KE}

3. Upon receiving a message $(\text{Key}, \text{sid}, P, k')$ from the adversary, for P in $\{I, R\}$ do:
 a) If P is active and neither I, R are corrupted, then do: if there is no recorded key k then randomly choose k and record k. Next output $(\text{Key}, \text{sid}, k)$ to P.
 b) Else, if P is active and either of I, R is corrupted then output $(\text{Key}, \text{sid}, k')$ to P.
 c) Else, P is not active, do nothing.
Key-Exchange Protocols

Protocol 2DH

Assuming authentication channel

A
Choose \(x \),
Compute \(g^x \)
Compute \(g^{xy} \),
Erase \(x \),
Output \(g^{xy} \)

B
Choose \(y \),
Compute \(g^y \) and \(g^{xy} \),
Erase \(y \),
Output \(g^{xy} \)
Key-Exchange Protocols

Protocol m2DH

Assuming authentication channel

A
- Choose x,
- Compute g^x
- Compute g^{xy},
- Erase x,
- Output g^{xy}

B
- Choose y,
- Compute g^y and g^{xy},
- Erase y
- Output g^{xy},
Prove and Refute

• Prove: m2DH realizes F_{KE} in the F_{AUTH} hybrid world assuming erasure

• Refute: 2DH does not realize F_{KE} in the F_{AUTH} hybrid world assuming erasure
Prove

• Theorem: Key-exchange protocol m2DH in the F_{AUTH} hybrid world UC-realizes functionality F_{KE} under the DDH assumption and assuming secure erasure.

• Proof idea: construct a simulator for all environment the two worlds cannot be distinguished.
Prove

m2DH in the F_{AUTH} hybrid world
Refute

• Theorem: Key-exchange protocol 2DH in the F_{AUTH} hybrid world does not UC-realize functionality F_{KE} under the DDH assumption and assuming secure erasure.

• Proof idea: construct an environment to distinguish the two worlds.
Refute 2DH in the F_{AUTH} hybrid world
We may simulate the hybrid world as before; But, If corrupt Alice when Bob just returns his output and Alice does not receive Bob’s second move, What will happen?

Hybrid =
\[
\begin{align*}
&\text{Alice’s internal } x \\
&\text{Bob’s transcript } g^y \\
&\text{Bob’s output } k = g^{xy}
\end{align*}
\]

Ideal =
\[
\begin{align*}
&\text{Alice’s internal } x \\
&\text{Bob’s transcript } g^y \\
&\text{Bob’s output random } k
\end{align*}
\]
Outline

• Review
• Key-Exchange
• Signature
Outline

- Review
- Key-Exchange
- Signature
Hierarchy
Functionality \mathcal{F}_{SIG}

Key generation: Upon receiving (KeyGen, sid) from party S, verify that $sid = (S, sid')$ for some sid'. If not, then ignore the input. Else, forward (KeyGen, sid) to the adversary S.

Upon receiving $(\text{Algorithms}, sid, s, v)$ from the adversary S, record (s, v) and output $(\text{VerificationAlg}, sid, v)$ to party S, where s is a signing algorithm, and v is a verification algorithm.

Signature generation: Upon receiving (Sign, sid, m) from party S where $sid = (S, sid')$, let $\sigma = s(m)$, verify that $v(m, \sigma) = 1$. If so, then output $(\text{Signature}, sid, \sigma)$ to party S, and record (m, σ). Else, halt.

Signature verification: Upon receiving $(\text{Verify}, sid, m, \sigma, v')$ from party V, where $sid = (S, sid')$, do: if $v' = v$, the signer S is not corrupted, $v(m, \sigma) = 1$, and m is not recorded, then halt. Else, output $(\text{Verified}, sid, v'(m, \sigma))$ to party V.

Realization

Definition (EU-CMA Signature Schemes) A signature scheme $\Sigma = (\text{gen}, \text{sign}, \text{verify})$ is called EU-CMA if the following properties hold for any negligible function $\text{negl}(\cdot)$, and all large enough values of the security parameter λ,

Completeness: For any message $m \in \mathcal{M}$,

$$\Pr[(vk, sk) \leftarrow \text{gen}(1^\lambda); \sigma \leftarrow \text{sign}(vk, sk, m); 0 \leftarrow \text{verify}(vk, m, \sigma)] \leq \text{negl}(\lambda).$$

Consistency: For any $m \in \mathcal{M}$, the probability that $\text{gen}(1^\lambda)$ generates $\langle vk, sk \rangle$ and $\text{verify}(vk, m, \sigma)$ generates two different outputs in two independent invocations is smaller than $\text{negl}(\lambda)$.

Unforgeability: For any PPT forger F,

$$\Pr[(vk, sk) \leftarrow \text{gen}(1^\lambda); (m, \sigma) \leftarrow F^{\text{sign}(vk, sk, \cdot)}(vk);$$

$$1 \leftarrow \text{verify}(vk, m, \sigma) \text{ and } F \text{ never asked } \text{sign}(vk, sk, \cdot, \cdot) \text{ to sign } m \leq \text{negl}(\lambda).$$
By contradiction, assume Σ is not EU-CMA, i.e. there exist either a successful completeness attacker, or a consistency attacker, or a forger, construct Z based on them respectively to distinguish the two worlds.

By contradiction, assume π_Σ does not realize F_{SIG}, i.e. we have a successful Z in hand, and we need to show Σ is not EU-CMA, i.e. we need to show Σ is either not complete, or not consistent, or not unforgeable; assume Σ is complete and consistent, we need to construct a successful forger based on the Z.

Theorem: Σ is EU-CMA $\iff \pi_\Sigma$ securely realizes F_{SIG}.
Summary

• Framework vs. Primitives
• Prove vs. Disprove Techniques
• Concrete vs. General Constructions
References

• Google "Ran Canetti" & "DBLP" "slides" etc..

• Papers

• Slides
Thanks.
Universal Composition

Hong-Sheng Zhou

Computer Science and Engineering
University of Connecticut