BWT: forward and backward transforms

Burrows-Wheeler transform (BWT) is one of the most important developments in string algorithms during the past twenty years. Our presentation here is based on the paper: “Opportunistic Data Structures with Applications”, Paolo Ferragina and Giovanni Manziniy, FOCS 2000.

Given a text, consider all rotations (regardless left or right rotate) and sort these rotations. Example, $S = \text{mississippi}$. Commonly used trick: add a $ to end. Dollar sign is the single smallest (i.e. alphabetically smaller than any other symbol). These are the rotations: mississippi$, ississippi$m, ssissippi$mi, sissippi$mis,issippi$miss,isisippsissi,ippi$mississ, ppi$mississi,pi$mississip,i$mississipp,$mississippi.

Now question: for any S, which rotation is the smallest? Always S! But not sure which one is largest (not necessarily S). Sort:

1: mississippi
2: $i\text{mississipp}$
3: $ippi\text{mississ}$
4: $issippi\text{miss}$
5: $ississippi\text{m}$
6: mississippi
7: $pi\text{mississip}$
8: $ppi\text{mississi}$
9: $sippi\text{missis}$
10: mississippi
11: $sippi\text{missi}$
12: mississippi

The forward BWT is, given text S, generate the last column L. Here, we can not explicitly create all rotations, which leads to $O(n^2)$ time. Simple observation: rotations in BWT correspond exactly to the order of sorted suffixes. That is, take the portion from left till the $ of each rotation, that is exactly the suffixes. Thus, we simply construct suffix array SA. Say $SA[i] = k$, then that letter in L is $S[k-1]$.

Now, why bother performing BWT? Short answer: BTW allows easier compression (with simple techniques like run-length encoding, BTF, etc). BWT is currently one of most powerful compression (and also fast).

Now we introduce the backward BWT. Our first observation is, Every column is a permutation of original S. BWT: output the last column L. In the above example, it would output $L = \text{ipssm}$pissii. We call first column F (a permutation of L): iiiimppssss. Note F is sorted already. An interesting observation is: given L, can reconstruct the original S. This is not obvious: L usually looks quite different from S.

Now suppose we know L. Obviously, we can construct F by sorting L. Here is the first question: can you find the last char of S from the given L? The answer is: $L[1]$. Make sure you understand why this is the case. But how to find other parts of S? Let us look at what is the second last of S. Observation: suppose there is one row i, where we know $F[i]$ and $L[i]$. Then in some rotation, we will have $L[i]$ and $F[i]$ together like: $\ldots L[i]F[i]\ldots$. The next observation is critical to BWT. Let $F[i] = c$. Consider all rotations in the rotation matrix M that ending with c. For example, consider $F[1] = i$. There are four rotations ending with i. Now imagine we right-rotate each of these four rotations by 1. Then they are now starting with i (and still in M). The key is: their relative ranking within is unchanged! Why? Suppose there are two rotations ending with i and the prefix parts are S_1 and S_2 respectively. That is, these rotation are S_1i and S_2i. Suppose $S_1 < S_2$ (and thus the first rotation proceeds the second in M).
Now after right-rotation-by-1, the two rotations become: \(iS_1 \) and \(iS_2 \), where we still have \(iS_1 < iS_2 \).

Now return to the original question: how to continue after knowing the last of \(S \) is \(L[1] = i \)? There are 4 rotations ending with \(i \), with \(L[1] \) being the first. So there are four rotations starting with \(i \) (after right-rotation by 1), and the order is still the same. That is, \(iS \) is the right rotation (by 1) of original \(S \). So, the second to last character is \(L[2] = p \). Continue: there are two rotations ending with \(p \) (with \(M[2] \) being the first). So the right-rotation-1 is the first row in \(M \) starting with \(p \) (i.e. \(M[7] \)).

So The third-to-last is \(L[7] = p \). We can continue and obtain the entire \(S \) from \(L \).

Now the detailed algorithm for backward BTW.

1. Compute the array \(C[1, K] \) where \(k \) is the size of alphabet. \(C[c] \) is equal to the number of occurrences of characters \($, 1, 2, \ldots, c-1 \) in the text \(S \). Notice that \(C[c] + 1 \) is the position of the first occurrence of \(c \) in \(F \) (if any). That is, \(C[c] \) is equal to the number of times all characters smaller than \(c \) in \(S \).

2. Define the LF-mapping \(LF[1 \ldots n + 1] \) as follows \(LF[i] = C[L[i]] + r_i \), where \(r_i \) equals the number of occurrences of character \(L[i] \) in the prefix \(L[1; i] \).

3. Reconstruct the original text \(S \) backward as follows: set \(s = 1 \) and \(S[n] = L[1] \) then, for each \(i = n - 1 \) downto 1, do \(s = LF[s] \) and \(T[i] = L[s] \). Here, \(s \) is the index of current position into \(L \) array; \(i \): which one position to recover in \(T \).

Example: how this algorithm runs for \(S=\text{mississippi$} \). Step 1 gives \(C[$, i, m, p, s] = [0, 1, 5, 6, 8] \).
