Topic: Subtree Prune and Regraft

Maximum Agreement Forest (MAF)

Forest contains the smallest number of components.

Lemma 1: $\text{dspr}(T, T') = |\text{MAF}(T, T')| - 1$

Proof:

1) $\text{dspr}(T, T') \geq |\text{MAF}(T, T')| - 1$

Assume: $T \rightarrow T'$ using dspr spr operations

Claim: $|\text{MAF}| \leq \text{dspr} + 1$

2) $\text{dspr} \leq |\text{MAF}| - 1$

Using Construction:

![Diagram showing the process of building a tree incrementally using MAF]

build the tree incrementally using MAF

Suppose we have our tree T:

![Diagram showing the process of adding T2 to make and grow the tree]
Case where this doesn't work:

| MAF | = 2, but we can't transform with one spr operation.

To fix this add a special leaf r

Now $|MAF| = 3$

Integer Linear Programming Approach

Given T and T' find $MAF(T, T')$

Cut T only and use T' as a reference.

For every branch, we may choose to cut or not. Every edge has a boolean variable.

Def: $C_i = 1$ if the edge is cut
We want the min(\(\sum C_i \)) such that:
1) Type 1: We ensure that if \(T_i \) from \(T \rightarrow T_i \) is a subtree of \(T' \)

Subtree means it can choose which edges to keep.

How can we tell two trees are topologically the same?

Use triples: \(i, j, k \) of 3 leaves!

- Two trees are topologically the same iff all triples are the same.

Consider all triples \((j,k,l)\) in \(T \) that are \textbf{NOT} the same in \(T \) and \(T' \)

Define \(S(j, k, l) \) as the set of edges that connect \(j, k, l \) in \(T \)

\[\sum C_i \geq 1 \]

for \(i \) existing in \(S(j,k,l) \)

We need type 2 because they can overlap!
2) Type 2: Ensure no overlap

for all \((j,k)\) and \((p,q)\) non-overlap in \(T\) but overlap in \(T'\)

\[\sum C_i \geq 1 \]

for \(I\) existing in path\((j,k)\) and path\((p,q)\)

Fixed Parameter Tractable (FPT)

Parameters: \(k\), size of \(n\) since we cannot solve this problem poly\((n)\)

Running time is \(O(2^k n)\)

\(k\) represents dspr

2004 Algorithm: \(O((56k)^{2^k}n^3)\)

2008 Algorithm: \(O(4^k k^4 + n^3)\)

2009 Algorithm: \(O(3^k n)\)

A more recent but more complicated algorithm runs in:

\(O(2.42^k n)\)

\(O(3^k n)\) Algorithm:

sibling pairs

MAF:

Shrink the tree!