Computing the Lcp array in linear time.

In class Friday I mentioned that the depth array can be computed from the Suffix Array without knowing the string. That is incorrect. In the algorithm below, the string is consulted.

Given a string S, define Suff_k as the suffix of string S starting at position k. Define $lcp(S_1, S_2)$ as the length of the longest common prefix of strings S_1 and S_2. If POS is the suffix array of a string S, and k is an entry at a position, say i, of POS, then define $\text{Pred}(k)$ as the entry in position $i - 1$ of POS. That is $\text{Pred}(k)$ is the entry in POS just to the left of where k is in array POS. We want to compute, for each k from 1 to n, $LCP(\text{Suff}_k, \text{Suff}_{\text{Pred}(k)})$, which is defined to be the length of the longest common prefix of Suff_k and $\text{Suff}_{\text{Pred}(k)}$; this is also called $\text{depth}(k)$.

We will compute these in order of k from 1 to n. Of course, for each k, we could compute $LCP(\text{Suff}_k, \text{Suff}_{\text{Pred}(k)})$ by doing a direct comparison from the start of Suff_k and $\text{Suff}_{\text{Pred}(k)}$ for as long as they match. We call that the “direct approach”. But the total time for the direct approach would be $O(n^2)$, not $O(n)$. We will use one simple speedup of the direct approach to obtain an $O(n)$ time algorithm.

Suppose $j = \text{Pred}(k)$ and $LCP(\text{Suff}_k, \text{Suff}_j) = h > 0$.

The first claim is: $LCP(\text{Suff}_{k+1}, \text{Suff}_{j+1}) = h - 1$. This follows immediately from the fact that $LCP(\text{Suff}_k, \text{Suff}_j) = h > 0$. Draw a picture of the string and positions $k, k + 1, j, j + 1$.

The second claim is that if $h > 0$, then $LCP(\text{Suff}_{k+1}, \text{Suff}_{\text{Pred}(k+1)}) \geq LCP(\text{Suff}_{k+1}, \text{Suff}_{j+1})$, and hence $LCP(\text{Suff}_{k+1}, \text{Suff}_{\text{Pred}(k+1)}) \geq h - 1$.

This follows from looking at the locations of the leaves $k + 1$, $j + 1$ and $\text{Pred}(k + 1)$ are in the suffix tree. By definition and construction of POS, the LCA of leaves $k + 1$ and $\text{Pred}(k + 1)$ is at or below the LCA of leaves $k + 1$ and $j + 1$ (draw a picture). In more detail, the paths to leaf $k + 1$ and to leaf $j + 1$ agree for exactly $h - 1$ characters, and then they diverge at some node, say v. Now $\text{Pred}(k + 1)$ is the leaf visited in the lexicographic DFS (which is conceptually one way to obtain or define the suffix array) just before leaf $k + 1$ is visited, and if the path to leaf $\text{Pred}(k + 1)$ does not extend below v, that would be impossible. Hence $LCP(\text{Suff}_{k+1}, \text{Suff}_{\text{Pred}(k+1)}) \geq h - 1$.

The consequence of the second claim is that when we want to compute $LCP(\text{Suff}_{k+1}, \text{Suff}_{\text{Pred}(k+1)})$ in the direct approach, we don’t have to start character comparisons at positions $k + 1$ and $\text{Pred}(k + 1)$ in S, but rather can skip ahead by $h - 1$ positions and start comparing at positions $k + 1 + h - 1 = 1$.
$k + h$ and $\text{Pred}(k + 1) + h - 1$. This is because we already know that if we did start comparing at positions $k + 1$ and $\text{Pred}(k + 1)$ then those comparisons would match for $h - 1$ positions, if $h > 0$.

We claim that with the above little speedup, compared to the $O(n^2)$ direct approach, the number of comparisons in $O(n)$. To see this, consider how $\text{Depth}(k)$ changes as k increases from 1 to n. At the start of each iteration, the known depth either decreases by one (if $\text{Depth}(k - 1) > 0$), or it remains the same (if $\text{Depth}(k - 1) = 0$). After the start of any iteration, the Depth increases by exactly the number of matches made. Since the total decrease of Depth is at most n (the number of iterations), and Depth can never be larger than n, there can be at most $2n$ matches over the execution of the algorithm. Each iteration ends as soon as there is a mismatch, so there can be at most n mismatches. So, the total number of comparisons is bounded by $3n$. All other work done in the algorithm is proportional to the number of compares.