1 **Exercise 22.2-7**

Do Exercise 22.2-7 on p. 602. You do not have to give a rigorous proof of the correctness of your algorithm, but you do need to give an intuitive explanation why your algorithm works. Remember to analyze the running time.

2 **Querying on a tree**

You are given a rooted binary tree $T = (V, E)$, along with a designated root node $r \in V$. The size of V is n. Recall that a node in a tree keeps tracks of its descendants and its parent node. Also recall that node u is said to be an ancestor of node v in the rooted tree, if the path from r to v in T passes through u.

A commonly performed querying on the trees is: given two nodes u and v, is u an ancestor of v?

You wish to preprocess the tree so that queries of this form for any two nodes u and v can be answered in constant time. The preprocessing itself should take linear time. That is, you can spend $O(n)$ time before any query arrives; then you must answer each query like “is node u an ancestor of node v?” in constant time.

3 **Semi-connected graphs**

Do Exercise 22.5-7 (on p.621). To get full credit, your algorithm should run in time $O(V + E)$.

4 **MST**

Let G be a connected, undirected graph, where the edge weights are all distinct. You are also given a specific edge e in G. You want to find out whether e is contained in some minimum spanning tree.

1. First prove that $e = (u,v)$ does not belong to any MST iff there is a path between u and v with edges all cheaper than e.

2. Give an $O(V+E)$ algorithm for this problem.