1 Probabilistic analysis

1. You toss a coin, which gives head with probability \(p \) and tail with probability \(1 - p \). How many times do you expect to toss until you get the first head? Note: use the formula of expected value.

2. DNA sequences consist four nucleotides: A, T, C and G. We generate two random DNA sequences \(S_1 \) and \(S_2 \), by picking A, T, C, G with the same chance. The length of the two DNA sequences are both \(n \). What is the expected number of positions where \(S_1 \) and \(S_2 \) match (i.e. \(S_1[i] = S_2[i] \))?

2 Balls and Bins, again

Suppose we throw \(n \) balls (note we will throw exactly \(n \) balls) into \(n \) bins with the probability of a ball landing in each of the \(n \) bins being equal. We assume each throwing is independent of other throwing. You can assume \(n \) is large. You may need the following mathematical fact: when \(n \to \infty \), \((1 - \frac{1}{n})^n \to e^{-1}\), where \(e \) is the well-known mathematical constant.

1. What is the probability of a particular box (say the first box) end up being empty after the \(n \) throwing?

2. What is the expected number of empty bins?

3 QuickSort

We consider a variation of the QuickSort, which uses the following partition algorithm. Note that the rest of the QuickSort algorithm remains intact: will recursively sort the \(A^- \) and \(A^+ \) partitions. For analysis, we assume the elements in \(A \) are all distinct.

\[\text{Partition}(A, l, r) \]

1. \textbf{while} true \textbf{do}
2. \hspace{1em} Choose an element \(A[i] \) from \(A[l..r] \) uniformly at random
3. \hspace{1em} \(A^- \leftarrow \) elements in \(A[l..r] \) that are smaller than \(A[i] \).
4. \hspace{1em} \(A^+ \leftarrow \) elements in \(A[l..r] \) that are larger than \(A[i] \).
5. \hspace{1em} if Size of \(A^- \) and size of \(A^+ \) are both no smaller than a quarter of size of \(A[l..r] \) (i.e. \((r - l + 1)/4\)) \textbf{then}
6. \hspace{2em} Return \(A[i] \) (and \(A^- \) and \(A^+ \)) as the result of the partition.
7. \hspace{1em} \textbf{end if}
8. \textbf{end while}

Now answer the following questions.

1. What is the worst-case running time of Partition of list of \(n \) elements? For a single iteration, what is the probability of statement 6 (the Return) will be called? What is the expected running time for a list with \(n \) elements?

The QuickSort algorithm spends most of the time to run Partition subroutine for \(A[l, r] \) of different sizes. We now group the array portions as follows: we say a subproblem is of type \(i \) if its size is between \(n(3/4)^{i+1} \) and \(n(3/4)^i \).

2. How many type \(i \) problems are there? Why? What is the expected running time for Partition to run on a type \(i \) subproblem?

3. What is the total expected running time of QuickSort?