1 BFS

Do Exercise 22.2-6. You do not have to give a rigorous proof of the correctness of your algorithm, but you do need to give an intuitive explanation why your algorithm works. Remember to analyze the running time.

2 Topological sort

Do Exercise 22.4-2 (on p. 552).

3 Querying on a tree

You are given a rooted binary tree \(T = (V, E) \), along with a designated root node \(r \in V \). The size of \(V \) is \(n \). Recall that a node in a tree keeps tracks of its descendants and its parent node. Also recall that node \(u \) is said to be an ancestor of node \(v \) in the rooted tree, if the path from \(r \) to \(v \) in \(T \) passes through \(u \).

A commonly performed querying on the trees is: given two nodes \(u \) and \(v \), is \(u \) an ancestor of \(v \)? You wish to preprocess the tree so that queries of this form for any two nodes \(u \) and \(v \) can be answered in constant time. The preprocessing itself should take linear time. That is, you can spend \(O(n) \) time before any query arrives; then you must answer each query like “is node \(u \) an ancestor of node \(v \)?” in constant time.