1 Topological sort

Do Exercise 22.4-2 (on p. 614).

2 Adjacency matrix of graph

Suppose you are given an undirected graph G, which is represented by adjacency matrix A. We assume there is no self-loops in G, and there is at most one edge between two nodes of G. In this problem, we want to find whether there exists three nodes x, y and z in G such that x, y and z are pairwise connected by some edge in G (i.e. there exists an edge between each pair out of the three nodes). A naive algorithm would try all possible x, y and z but this will take $O(n^3)$ (where n is the number of nodes in G). Now give a faster algorithm for this problem. Hint: consider multiplying the adjacency matrix A to itself; what will this product A^2 tell you?

3 Querying on a tree

You are given a rooted binary tree $T = (V, E)$, along with a designated root node $r \in V$. The size of V is n. Recall that a node in a tree keeps tracks of its descendants and its parent node. Also recall that node u is said to be an ancestor of node v in the rooted tree, if the path from r to v in T passes through u.

A commonly performed querying on the trees is: given two nodes u and v, is u an ancestor of v? You wish to preprocess the tree so that queries of this form for any two nodes u and v can be answered in constant time. The preprocessing itself should take linear time. That is, you can spend $O(n)$ time before any query arrives; then you must answer each query like “is node u an ancestor of node v?” in constant time.

4 Semi-connected graphs

Do Exercise 22.5-7 (on p.621). To get full credit, your algorithm should run in time $O(|V| + |E|)$.