Edited Monograph

Mathematics in Industy -- Challenges and Frontiers, 20003.
Editors: D. R. Ferguson and T. J. Peters
SIAM, 2005. ISBN 0-89871-598-9

T. J. Peters is a co-author of a chapter in above monograph.

Edited Monograph

Mathematics in Industy -- Challenges and Frontiers, 20009.
Editors: D. A. Field and T. J. Peters
SIAM, 2009, ISBN: 978-0-898719-34-5, www.siam.org/proceedings/industry/2009/mi09.php

D. A. Field and T. J. Peters co-authored the preface, The Art of Mathematics for Industry.

Selected Publications on Topology in Animation & Visualization and on Computational Topology

Visual Experiments of Geometric Combinatorics for Neural Stem Cells and Their Derivatives.
T. J. Peters, J. Conover, D. McManus, K. Pratt, K. D. Williams
BICOB17, Honolulu, HI, March 20, 2017.

Computational topology: isotopic convergence to a stick knot.
J. Li, T. J. Peters, K. E. Jordan, P. Zaffetti,
Topology and Its Applications, 206 (15), 276--283, 2016.

Topological subtleties for molecular movies.
J. Li, T. J. Peters, K. Marinelli, E. Kovalev, K. E. Jordan,
Topology and Its Applications, 118 (15), 91-96, 2015.

Computational Topology for Approximations of Knots.
J. Li, T. J. Peters, K. E. Jordan
Applied General Topology, 15 (2), 203-220, 2014.

Isotopic Equivalence from Bezier Curve Subdivision for Application to High Performance Computing,
K. E. Jordan, J. Li, T. J. Peters and J. A. Roulier
CAGD}, 31, 642-655, 2014.

Topological Integrity for Dynamic Spline Models During Visualization of Big Data.
H. P. Cassidy, T. J. Peters, H. Ilies, K. E. Jordan
in Topological Methods in Data Analysis and Visualization III,
Editors: Bremer, P.-T., Hotz, I., Pascucci, V., Peikert, R.
Springer, NY, 167 - 186, 2014.

Isotopic Convergence Theorem.
J. Li, T. J. Peters
Journal of Knot Theory and Its Ramifications, March 2013,
DOI: 10.1142/S0218216513500120

Computational Topology Counterexamples with 3D Visualization of Bezier Curves.
J. Li, T.J. Peters, D. Marsh, K.E. Jordan
Applied General Topology, 13(2):115-134, 2012.

Dynamic Computational Topology for Piecewise Linear Curves.
H. P. Cassidy, T. J. Peters, K. E. Jordan
Canadian Conference on Computational Geometry, Charlottetown, P.E.I., 2012.

Topology Verification for Isosurface Extraction,
T. Etiene, L. G. Nonato, C. Scheidegger, J. Tierny, T. J. Peters, V. Pascucci, R. M. Kirby and C. T. Silva,
IEEE Transactions on Visualization and Computer Graphics, 18 (6), 952 - 965, 2012.

Unknots with highly knotted control polygons,
J. Bisceglio, T. J. Peters, and J. A. Roulier, C. H. Sequin,
Computer Aided Geometric Design, 28 (3), 2011, 212 - 214.
pre-print posted here, with final version available at CAGD cited source.

Geometric Topology & Visualizing 1-Manifolds,
K. E. Jordan, L. Miller, T. J. Peters, and A. C. Russell,
Topology In Visualization, Spring Book Series, in press.

Modeling time and topology for animation and visualization,
K. E. Jordan, L. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell,
Theoretical Computer Science, Volume 405, Issues 1-2, 6 October 2008, Pages 41-49.

Topological Neighborhoods for Spline Curves : Practice and Theory,
L. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell,
Lecture Notes in Computer Science, Reliable Implementation of Real Number Algorithms: Theory and Practice, 2008, DOI: 10.1007/978-3-540-85521-7_9

Preserving computational topology by subdivision of quadratic and cubic Bezier curves,
E. L. F. Moore, T. J. Peters, J. A. Roulier,
Computing, Springer Wien, Special issue on Geometric Modeling (Dagstuhl 2005)
Volume 79, Numbers 2-4 ; April, 2007, 317-323,
Special editors: S. Hahmann, G. Brunnett, G. Farin and R. Goldman, invited article.

Computational topology for isotopic surface reconstruction,
K. Abe, J. Bisceglio, D.R. Ferguson, T.J. Peters, A.C. Russell, T. Sakkalis,
Theoretical Computer Science, Volume 365, Issue 3, 12 November 2006, Pages 184-198

Computational Topology
Blackmore, D. L. and Peters, T. J.,
invited chapter in the monograph, in Open Problems in Topology II, (ed.) E. Pearl,
Elsevier, 2006, pp. 491 - 546.

Reconstructing surfaces using envelopes; bridging the gap between theory and practice,
Bisceglio, J., Peters, T. J. and Abe, K.,
Posters of ACM Siggraph, 2006.

Computational topology for reconstruction of surfaces with boundary: integrating experiments and theory,
Abe, K., Bisceglio, J., Peters, T. J., Russell, A. C., Ferguson, D. R., Sakkalis, T.,
IEEE International Conference on Shape Modeling and Applications, June 15 - 17, 2005 at MIT,
IEEE Computer Society, Los Alamitos, CA, 288 -- 297.

Computational topology for geometric design and molecular design,
Mathematics in Industy -- Challenges and Frontiers, 20003.
E. L. F. Moore and T.J. Peters,
Editors: D. R. Ferguson and T. J. Peters
Chapter in above monograph, SIAM, 2005. ISSBN 0 -89871-598-9

Integrating Topology and Geometry for Macro-Molecular Simulations,
Moore, Edward L. F. ; Peters, Thomas J. ; Ferguson, David R. ; Stewart, Neil F.
Spatial Representation: Discrete vs. Continuous Computational Models, editors: Ralph Kopperman and Michael B. Smyth and Dieter Spreen and Julian Webster,Dagstuhl Seminar Proceedings (04351), 2005,
URL: http://drops.dagstuhl.de/opus/volltexte/2005/124/

Isotopic approximations and interval solids,
Sakkalis, T., Peters, T. J. and Bisceglio, J., Computer-Aided Design, Volume 36, Issue 11, 15 September 2004, Pages 1089-1100.

Computational Topology for Regular Closed Sets (within the I-TANGO project)
Topology Atlas Invited Contributions vol. 9, no. 1 (2004) 12 pp.
T.J. Peters, J. Bisceglio, D.R. Ferguson, C.M. Hoffmann, T. Maekawa, N.M. Patrikalakis, T. Sakkalis, and N.F. Stewart, On-line journal, Invited Contribution, Topology Atlas.

Specifying useful error bounds for geometry tools: an intersector exemplar ,
Mow, C., Peters, T. J., and Stewart, N. F., CAGD, 20 (2003) pp. 247 - 251.

Ambient isotopic approximations for surface reconstruction and interval solids ,
Sakkalis, T. and Peters, T. J., ACM Symposium on Solid Modeling, June, 2003

Computational topology: ambient isotopic approximation of 2-manifolds,
Amenta, N., Peters, T. J., and Russell, A.,
Invited article, Theoretical Computer Science, 305, 3-15, 2003.

Equivalence of topological form for curvilinear geometric objects,
Andersson, L.-E., Peters, T. J. and Stewart, N. F.,
International Journal Computational Geometry and Applications, (10), No. 6, 2000, 609 - 622.

Self-intersection of composite curves and surfaces,
Andersson, L.-E., Peters, T. J. and Stewart, N. F.,
Computer Aided Geometric Design (15), No. 5, 507 - 527, 1998.

Algorithmic tolerances and semantics in data exchange,
Peters, T. J., Stewart, N. S., Ferguson, D. R., and Fussell, P. S.,
Proceedings of the 1997 ACM Symposium on Computational Geometry,
Nice, France, June 4 - 6, 1997.

The Role of Topology in Engineering Design Research,
D. W. Rosen and T. J. Peters, Research in Engineering Design,
1996, Vol 8, No. 2. pp. 81-98.

Propagating Topological Tolerances for Rapid Prototyping,
T. J. Peters, S. A. Demurjian, D. M. Needham, R. J. Peters, S. M. Dorney,
ASME IMECE, Atlanta, Nov., 1996.

Polyhedral Perturbations that Preserve Topological Form,
L-E. Andersson, S. M. Dorney, T. J. Peters, N. F. Stewart,
Computer Aided Geometric Design, 12 (1995) 785 - 799.

The Diversity of Topological Applications within Computer Aided Geometric Design,
Peters, T. J., Rosen, D. W., and Dorney, S. M.,
Annals of the New York Academy of Sciences, 728 (1994) 198 - 209.

Any Interesting Related Reference

Economic Report on Interoperability for CAD ,
Research Triangle Park and NIST,
Technical Report, citing billion dollar loss annually.