Mathematics in Industy -- Challenges and Frontiers, 20003.

Editors: D. R. Ferguson and T. J. Peters

SIAM, 2005. ISBN 0-89871-598-9

T. J. Peters is a co-author of a chapter in above monograph.

Mathematics in Industy -- Challenges and Frontiers, 20009.

Editors: D. A. Field and T. J. Peters

SIAM, 2009, ISBN: 978-0-898719-34-5, www.siam.org/proceedings/industry/2009/mi09.php

D. A. Field and T. J. Peters co-authored the preface, The Art of Mathematics for Industry.

*
Visual Experiments of Geometric Combinatorics for Neural Stem Cells and Their Derivatives.
T. J. Peters, J. Conover, D. McManus, K. Pratt, K. D. Williams
BICOB17, Honolulu, HI, March 20, 2017.
*

*
*

*
*

*
Computational topology: isotopic convergence to a stick knot.
*

J. Li, T. J. Peters, K. E. Jordan, P. Zaffetti,

Topology and Its Applications, 206 (15), 276--283, 2016.

*
*

*
*

*
Topological subtleties for molecular movies.
*

J. Li, T. J. Peters, K. Marinelli, E. Kovalev, K. E. Jordan,

Topology and Its Applications, 118 (15), 91-96, 2015.

*
*

*
*

*
Computational Topology for Approximations of Knots.
*

J. Li, T. J. Peters, K. E. Jordan

Applied General Topology, 15 (2), 203-220, 2014.

*
*

*
Isotopic Equivalence from Bezier Curve Subdivision
for Application to High Performance Computing,
*

K. E. Jordan, J. Li, T. J. Peters and J. A. Roulier

CAGD}, 31, 642-655, 2014.

*
*

*
Topological Integrity for Dynamic Spline Models During Visualization of Big Data.
*

H. P. Cassidy, T. J. Peters, H. Ilies, K. E. Jordan

in Topological Methods in Data Analysis and Visualization III,

Editors: Bremer, P.-T., Hotz, I., Pascucci, V., Peikert, R.

Springer, NY, 167 - 186, 2014.

*
*

*
Isotopic Convergence Theorem.
*

J. Li, T. J. Peters

Journal of Knot Theory and Its Ramifications, March 2013,

DOI: 10.1142/S0218216513500120

*
*

*
Computational Topology Counterexamples with 3D Visualization of Bezier Curves.
*

J. Li, T.J. Peters, D. Marsh, K.E. Jordan

Applied General Topology, 13(2):115-134, 2012.

*
*

*
Dynamic Computational Topology for Piecewise Linear Curves.
*

H. P. Cassidy, T. J. Peters, K. E. Jordan

Canadian Conference on Computational Geometry, Charlottetown, P.E.I., 2012.

*
*

*
Topology Verification for Isosurface Extraction,
*

T. Etiene, L. G. Nonato, C. Scheidegger, J. Tierny, T. J. Peters, V. Pascucci, R. M. Kirby and C. T. Silva,

IEEE Transactions on Visualization and Computer Graphics, 18 (6), 952 - 965, 2012.

*
Unknots with highly knotted control polygons,
*

J. Bisceglio, T. J. Peters, and J. A. Roulier, C. H. Sequin,

Computer Aided Geometric Design, 28 (3), 2011, 212 - 214.

pre-print posted here, with final version available at CAGD cited source.

*
*

*
Geometric Topology & Visualizing 1-Manifolds,
*

K. E. Jordan, L. Miller, T. J. Peters, and A. C. Russell,

Topology In Visualization, Spring Book Series, in press.

*
*

*
Modeling time and topology for animation and visualization,
*

K. E. Jordan, L. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell,

Theoretical Computer Science, Volume 405, Issues 1-2, 6 October 2008, Pages 41-49.

*
*

*
Topological Neighborhoods for
Spline Curves : Practice and Theory,
*

L. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell,

Lecture Notes in Computer Science, Reliable Implementation of Real Number Algorithms: Theory and Practice, 2008, DOI: 10.1007/978-3-540-85521-7_9

*
*

*
Preserving computational topology by subdivision of quadratic and
cubic Bezier curves,
*

E. L. F. Moore, T. J. Peters, J. A. Roulier,

Computing, Springer Wien, Special issue on Geometric Modeling (Dagstuhl 2005)

Volume 79, Numbers 2-4 ; April, 2007, 317-323,

Special editors: S. Hahmann, G. Brunnett, G. Farin and R. Goldman, invited article.

*
*

*
Computational topology for isotopic surface reconstruction,
*

K. Abe, J. Bisceglio, D.R. Ferguson, T.J. Peters, A.C. Russell, T. Sakkalis,

Theoretical Computer Science, Volume 365, Issue 3, 12 November 2006, Pages 184-198

*
*

*
Computational Topology
*

Blackmore, D. L. and Peters, T. J.,

invited chapter in the monograph, in Open Problems in Topology II, (ed.) E. Pearl,

Elsevier, 2006, pp. 491 - 546.

*
*

*
Reconstructing surfaces using envelopes; bridging the gap between theory and practice,
*

Bisceglio, J., Peters, T. J. and Abe, K.,

Posters of ACM Siggraph, 2006.

*
*

*
Computational topology for reconstruction of surfaces with boundary:
integrating experiments and theory,
*

Abe, K., Bisceglio, J., Peters, T. J., Russell, A. C., Ferguson, D. R., Sakkalis, T.,

IEEE International Conference on Shape Modeling and Applications, June 15 - 17, 2005 at MIT,

IEEE Computer Society, Los Alamitos, CA, 288 -- 297.

*
*

*
Computational topology for geometric design and molecular design,
*

Mathematics in Industy -- Challenges and Frontiers, 20003.

E. L. F. Moore and T.J. Peters,

Editors: D. R. Ferguson and T. J. Peters

Chapter in above monograph, SIAM, 2005. ISSBN 0 -89871-598-9

*
*

*
Integrating Topology and Geometry for Macro-Molecular Simulations,
*

Moore, Edward L. F. ; Peters, Thomas J. ; Ferguson, David R. ; Stewart, Neil F.

Spatial Representation: Discrete vs. Continuous Computational Models, editors: Ralph Kopperman and Michael B. Smyth and Dieter Spreen and Julian Webster,Dagstuhl Seminar Proceedings (04351), 2005,

URL: http://drops.dagstuhl.de/opus/volltexte/2005/124/

*
*

*
Isotopic approximations and interval solids,
*

Sakkalis, T., Peters, T. J. and Bisceglio, J., Computer-Aided Design, Volume 36, Issue 11, 15 September 2004, Pages 1089-1100.

*
Computational Topology for Regular Closed Sets (within the I-TANGO project)
Topology Atlas Invited Contributions vol. 9, no. 1 (2004) 12 pp.
T.J. Peters, J. Bisceglio, D.R. Ferguson, C.M. Hoffmann, T. Maekawa,
N.M. Patrikalakis, T. Sakkalis, and N.F. Stewart, On-line journal,
Invited Contribution, Topology Atlas.
*

*
*

*
Specifying useful error bounds for geometry tools:
an intersector exemplar ,
*

Mow, C., Peters, T. J., and Stewart, N. F., CAGD, 20 (2003) pp. 247 - 251.

*
Ambient isotopic approximations for surface
reconstruction and interval solids ,
*

Sakkalis, T. and Peters, T. J., ACM Symposium on Solid Modeling, June, 2003

*
Computational topology: ambient isotopic
approximation of 2-manifolds,
*

Amenta, N., Peters, T. J., and Russell, A.,

Invited article, Theoretical Computer Science, 305, 3-15, 2003.

*
*

*
Equivalence of topological form for
curvilinear geometric objects,
*

Andersson, L.-E., Peters, T. J. and Stewart, N. F.,

International Journal Computational Geometry and Applications, (10), No. 6, 2000, 609 - 622.

*
*

*
Self-intersection of composite curves and
surfaces,
*

Andersson, L.-E., Peters, T. J. and Stewart, N. F.,

Computer Aided Geometric Design (15), No. 5, 507 - 527, 1998.

*
Algorithmic tolerances and semantics in data
exchange,
*

Peters, T. J., Stewart, N. S., Ferguson, D. R., and Fussell, P. S.,

Proceedings of the 1997 ACM Symposium on Computational Geometry,

Nice, France, June 4 - 6, 1997.

*
The Role of Topology in Engineering Design Research,
D. W. Rosen and T. J. Peters, Research in Engineering Design,
1996, Vol 8, No. 2. pp. 81-98.
*

*
*

*
*

*
Propagating Topological Tolerances for Rapid
Prototyping,
*

T. J. Peters, S. A. Demurjian, D. M. Needham, R. J. Peters, S. M. Dorney,

ASME IMECE, Atlanta, Nov., 1996.

*
*

*
Polyhedral Perturbations that Preserve Topological Form,
*

L-E. Andersson, S. M. Dorney, T. J. Peters, N. F. Stewart,

Computer Aided Geometric Design, 12 (1995) 785 - 799.

*
*

*
The Diversity of Topological Applications within
Computer Aided Geometric Design,
*

Peters, T. J., Rosen, D. W., and Dorney, S. M.,

Annals of the New York Academy of Sciences, 728 (1994) 198 - 209.

* Economic Report on Interoperability for CAD
,
Research Triangle Park and NIST,
Technical Report, citing billion dollar loss annually.
*