Topics

- Design Strategies

Standard Cell Libraries

- How do you decide on the composition of the cell library?
 - Number of inputs
 - Transistor sizing for varying capacitive loads
 - Pullup/pulldown ratio

Compiled Cells

- Standard cells
 - Must be redesigned for every new process technology
 - Design options are limited because of discrete set of cells
 - Customized cells would provide more flexibility
 - Automatic layout generation for design-specific requirements

Automatic Cell Generation

- Compiled Cells

Cell-based Design (or standard cells)

- Macrocells
 - Hard Macros
 - Predetermined physical design
 - Fixed transistor and wiring locations
 - Dense layout, optimized performance and power characteristics
Macrocells

- Soft Macros
 - Physical design is done automatically
 - Easily ported across many different technologies and processes
 - Macro cell compiler will take a functional and parameterized description and generate a netlist of standard cells

Intellectual property

- Macrocells can be acquired from third-party vendors
 - Includes appropriate compilers, debuggers, test vectors, prediction models
 - Similar to reusable software libraries
 - Examples include embedded processors, bus interfaces, DSP processors, ECC coders, etc.
Integrating Synthesis with Physical Design

System-on-a-Chip (SoC) Design
- Embed multiple functionalities on a single chip
- SoC is a natural result of having more and more transistors available
- Managing multiple modules becomes a design challenge

System-on-a-Chip (SoC) Design
- Embedded applications
- Mixed-mode applications (Analog/Digital)
- Heavy software component
- May have programmable and application specific components

Array-Based Design
- Cell-based and fully custom designs require a run through the full manufacturing process
 - Can take up to several months before the first chip arrives
 - Mask generation costs can make it very expensive
 - As process technologies get better, the tendency has been to use more and more masks
- Alternative is array-based implementations

Array-Based Design
- Pre-diffused
 - Mask-programmable
 - Gate arrays
 - Sea of gates
- Pre-wired
 - Field programmable gate arrays (FPGA)

Gate arrays
- Uncommitted Cell
- Committed Cell (4-input NOR)
Gate arrays

- Less compact than standard cells
- Manufacturing time savings is not as significant because the design times are the most important factor now

Field Programmable Gate Arrays

- Programmable Logic Style
 - Array-based
 - Cell-based
 - Function generator
- Programming Interconnect
 - Channel-routing
 - Mesh networks

Array-Based Programmable Logic

- Lower density than custom
- Lower performance
 - Each node has significant capacitance
- Only implements combinational logic - no registers or flip-flops