Topics

- CMOS Logic Delays
- Logical Effort

Multi-input Delay

Input Pattern Effects on Delay

NAND

- Delay is dependent on the pattern of inputs (input combination)
- **Low to high transition**
 - both inputs go low
 - delay is $0.69 \frac{R_p}{2} C_L$
 - one input goes low
 - delay is $0.69 R_n C_L$
- **High to low transition**
 - both inputs go high
 - delay is $0.69 (2 R_n) C_L$

Delay Dependence on Input Patterns

Fan-In Considerations

4-input NAND gate

- Distributed RC model
 - Elmore delay
 - $t_{lep} = \frac{0.69}{R_{lep}} \left(C_1 + C_2 + 2 C_3 + 4 C_4 \right)$
- Propagation delay deteriorates rapidly as a function of fan-in in a quadratic manner in the worst case.

CMOS Logic Gate Delays

- Using **Logical Effort** to simplify delay calculation
- Helps in deciding
 - Transistor sizing
 - Number of stages
 - Circuit Topology
Characterize process speed with delay parameter t_{pd}
- $d = \frac{d_{abs}}{t_{pd}}$
- $t_{pd} \approx 20$ps for a .25 micron process

Process independent delay has two components
- $d = p + h$
- h is the effort delay
- p is the parasitic delay

Effort delay has two components
- $h = g*f$
- g is the logical effort
- f is the electrical effort or effective fanout

Parasitic delay is the delay due to intrinsic delay of gate - mostly the drain capacitance
- Independent of output load and sizing
- Approximately equal to 1 for an inverter

Logical effort is a measure of the gate’s ability to deliver current
- An inverter has a logical effort of 1
- Depends only on topology not on process or sizing

Electrical effort is a measure of fanout
- C_{out}/C_{in}

Logical Effort assignment
- Ratio of the gate’s input capacitance to the input capacitance of an inverter delivering the same amount of current
- Can be derived through simulations and accurate measurement
- Or through estimations based on transistor widths

Inverter

\[
\begin{array}{c}
A \quad 2x \\
\quad 1x \\
\hline
\hline
\end{array}
\]

$C_{in} = 3$
$g = \text{LogicalEffort} = 1$

NAND

\[
\begin{array}{c}
A \\
B \\
\hline
\hline
\end{array}
\]

$C_{in} = 4$
$g = \text{LogicalEffort} = 4/3$
Logical Effort

- NOR

\[C_n = 5 \]
\[g = \text{Logical Effort} = 5/3 \]

Logical Effort

- NOR

\[C_n = 7 \]
\[g = \text{Logical Effort} = 7/3 \]

Logical Effort

- Parasitic delay

<table>
<thead>
<tr>
<th>Number of inputs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND</td>
<td>2 (p_{inv})</td>
<td>3 (p_{inv})</td>
<td>(n) (p_{inv})</td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>2 (p_{inv})</td>
<td>3 (p_{inv})</td>
<td>(n) (p_{inv})</td>
<td></td>
</tr>
</tbody>
</table>

Logical Effort

- Example: Inverter ring oscillator

- Estimate the frequency of the oscillator
Logical Effort

- Example: Inverter ring oscillator

 \[g_i = 1 \]

 \[f_i = 1 \]

 \[p_i = 1 \]

 \[d_i = g_i f_i + p_i = 2 \]

- Total delay = \(N \cdot d_i \cdot t_{p0} = 2N \cdot t_{p0} \)

 Frequency = \(1/(4N \cdot t_{p0}) \)

Logical Effort

- Example: Fo4 Inverter (Fanout of 4)

 \[g_i = 1 \]

 \[f_i = 4 \]

 \[p_i = 1 \]

 \[d_i = g_i f_i + p_i = 5 \]

Logical Effort

- Multistage logic networks

 Path Parasitic Delay

 \[P = \sum p_i \]

 Path Delay

 \[D = P + \sum g_i f_i \]

 How do we minimize \(D \)? How do we select the sizing?

- Path effort is an indirect measure of the path delay

 - Path Electrical Effort

 - Path Logical Effort

 - Path Effort

 The above does not include any consideration of the effect of fanout within the path

 - \(H \) counts only the fanout of the output

 - We need to express the branching behavior along the path
Logical Effort

- Branching Effort

\[b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}} = \frac{C_{\text{out}}} {C_{\text{in}}} \]

\[B = \prod b_i \]

\[FB = \frac{C_{\text{in}}}{C_{\text{out}}} \times \prod b_i = \prod f_i \]

Logical Effort

- Path Effort

\[H = G \times FB = \prod b_i \cdot \prod f_i = G \cdot F \]

- Path Delay

\[D = P + \sum b_i \cdot \sum f_i \]

- Minimized when each stage delay is equal

\[G \cdot F = k = \sqrt{H} \]

\[D = P + N \cdot \sqrt{H} \]

Logical Effort

- Example

\[G = \prod e = 1 \times 2 \times 2 = 4 \]

\[h = \frac{20}{10} = 2 \]

\[B = 1 \]

\[H = G \times FB = \frac{100}{27} \times 1 = \frac{100}{27} \]

Logical Effort

- Example

\[G = \prod e = 1 \times 2 \times 2 = 4 \]

\[h = \frac{20}{10} = 2 \]

\[B = 1 \]

\[H = G \times FB = \frac{100}{27} \times 1 = \frac{100}{27} \]
Logical Effort

- Example (cont)

\[
\begin{align*}
\hat{k} &= \frac{C}{V} = \frac{10}{1} = 10 \\
\hat{k} &= g_J \frac{4}{3} = \frac{4}{3} \times 10 = 5.16 = \Rightarrow z = 2.58
\end{align*}
\]