Course Goals

- Understand key components in VLSI designs
- Become familiar with design tools (Cadence)
- Understand design flows
- Understand behavioral, structural, and physical specifications
- Be able to apply VLSI design practices
- Be able to contribute to an industry digital VLSI design project

Lab

- No lab this week
- Make sure that you have an engineering UNIX account (for more details please contact the TA)
- Contact ECS if you don't

Topics

- MOS (Metal Oxide Semiconductor) transistor theory
- Transistor characterization and performance estimation
- CMOS logic design
- VLSI design methodologies
- VLSI subsystem design
- Verification
- Testing

What is VLSI design?

- The process of creating an integrated circuit from specifications to fabrication

What is an integrated circuit?

- A single integrated component that contains all the primary elements of an electrical circuit: transistors, wiring, resistors, capacitors, etc.

VLSI Design Automation

- Large number of components
- Optimize requirements for higher performance
 - Performance relates to speed, power and size.
- Time to market competition
- Cost
 - Using computer makes it cheaper by reducing time-to-market.

VLSI Design Cycle

System Specifications

Functional Design

Logic Design

Circuit Design

X=(AB+CD)\cdot X
VLSI Design Cycle

Physical Design

Fabrication

Packaging

IC Test

Intel 4004

- First microprocessor
- Designed in 1971
- 2300 transistors
- 10-um process
- ~100 KHz

Intel Itanium Processor

- Released in 2005
- 1.72 Billion transistors
- 90-nm process
- 2 GHz

Moore’s law

- The number of transistors per die doubles every 18-24 months – same for performance

Semiconductor Technology Scaling

- A new process generation is released every two to three years
 - ~2X smaller transistors
 - ~1.5X faster transistor performance
 - ~1.3X lower operating voltage
 - ~3X lower switching power
 - ~2X higher chip density

Billion-Transistor Integration

How do we do it?

- Circuit Partitioning
- Computer-aided design tools
 - Automation
 - Design methodology
 - Verification
 - Testing
Partitioning

- Break the problem into smaller more manageable parts
- Reuse logic modules
- Simplifies layout
- But it is not always easy deciding how to partition the problem
 - It's a very complex problem
 - It's NP hard
- Discussed in details in “CAD Algorithms” course

Computer-aided design

- Schematic capture
- Synthesis
- Simulation
- Verification
- Automated placement and routing

CAD Tools

- Cadence
- Synopsys
- Mentor graphics
- Magma
- Start-ups developed tools
- In-house tools

Design methodology

- Functional specification
 - What does the chip do?
- Behavioral specification
 - How does it do it? (abstractly)
- Logic design
 - How does it do it? (logically)
- Layout
 - How does it do it? (physically)

Design constraints

- Budget
 - Total cost
- Silicon area
- Power requirements
 - Dynamic
 - Static
- Speed
 - Performance
- Schedule
 - Time to market

Functional specification

- Full adder

\[\begin{align*}
\text{Cin} & \quad \text{X} \\
\text{Y} & \quad \text{S} \\
\text{Cout} & \quad \text{S}
\end{align*} \]
Behavioral specification

- VHDL
- Verilog

entity adder is
 -- i0, i1 and the carry-in, ci are inputs of the adder.
 -- s is the sum output, co is the carry-out.
 port (i0, i1 : in bit; ci : in bit; s : out bit; co : out bit);
end adder;

architecture rtl of adder is
begin -- This full-adder architecture contains two concurrent assignment.
 -- Compute the sum. s <= i0 xor i1 xor ci;
 -- Compute the carry. co <= (i0 and i1) or (i0 and ci) or (i1 and ci);
end rtl;

module fulladder (a,b,cin,sum,cout);
 input a,b,cin;
 output sum,cout;
 reg sum,cout;
 always @ (a or b or cin)
 begin
 sum <= a ^ b ^ cin;
 cout <= (a & b) | (a & cin) | (b & cin);
 end
endmodule

Logic design

<table>
<thead>
<tr>
<th>Carry (OUT)</th>
<th>Input 0</th>
<th>Input 1</th>
<th>Input 0 && Input 1</th>
<th>Input 0 ^ Input 1</th>
<th>Input 0 ^ Input 1 && Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Transistor schematic

Testing and verification

- Needed at every phase of the design
- Important to ensuring design robustness
- Critical to keeping to budget
- Time-consuming and high-cost
Design Process is Iterative

- Behavioral
- Structural
- Synthesis
- Simulation-Based Verification
- Simulation-Based Verification
- Simulation-Based Verification
- Simulation/Emulation-Based Verification

PNR: Placement and routing

VLSI design methodologies

- Full custom
 - Design for performance-critical cells
 - Very expensive
- Standard cell
 - Faster
 - Performance is not as good as full custom
- Gate array
- Field Programmable Gate Array

Comparison of Design Styles

<table>
<thead>
<tr>
<th>Area</th>
<th>Mass Production Volume</th>
<th>Medium Production Volume</th>
<th>Low Production Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Custom</td>
<td>Compact</td>
<td>Moderate</td>
<td>Large</td>
</tr>
<tr>
<td>Standard Cell</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Performance</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
</tr>
</tbody>
</table>

Production Volume:

- High
- Medium
- Low

Complexity:

- High
- Moderate
- Low

nMOS transistor

- If the gate is "high", the switch is on
- If the gate is "low", the switch is off

pMOS transistor

- If the gate is "low", the switch is on
- If the gate is "high", the switch is off

Logic gates in nMOS
Problems with nMOS

- Static current flow
 - When the transistor is on, there is a path from VDD to ground
 - Large power dissipation
 - Logic high out does not go all the way to VDD

Solution: CMOS

- No static current flow
- Less current means less power