
1

ECE 3401 Lecture 22

Instruction Set Architecture (II)

 2

Overview

 Computer architecture

 Operand addressing

• Addressing architecture

• Addressing modes

 Elementary instructions

• Data transfer instructions

• Data manipulation instructions

 Floating point computations

• Program control instructions

 Program interrupt and exceptions

 4

Basic Addition Algorithm

 Steps for addition (or subtraction):

(1) compute Ye - Xe (getting ready to align binary point). Ye>Xe

(2) right shift Xm that many positions to form Xm • 2Xe-Ye

(3) compute Xm • 2Xe-Ye + Ym

Example: .5372400 X 102 .5372400 X 102

 − .1580000 X 10-1 − .0001580 X 102

 .5370820 X 102

if result demands normalization, then normalization step follows:
(4) left shift result, decrement result exponent (e.g., 0.001xx…)
 right shift result, increment result exponent (e.g., 101.1xx…)
 continue until MSB of data is 1 (NOTE: Hidden bit in IEEE

Standard)

(5) if result is 0 mantissa, may need to zero exponent by special
step

 5

Example

 Adding operation on two IEEE single

precision floating point numbers (X and Y)
X = 0100 0000 1010 0000 0000 0000 0000 0000

Y = 1100 0000 0011 0000 0000 0000 0000 0000

1 8 23

S E M N = (-1) 2 (1.M)
S E-127

X = (-1) 0 2129-127 (1.01) = 22 *1.01

Y = (-1) 1 2128-127 (1.011)= -2*1.011

Xe>Ye

Y = -22*(1.011* 2-1)=-22*(0.1011)

X+Y= 22*(1.01 - 0.1011) = 22*(0.1001)=2*1.001

 = 0100 0000 0001 0000 0000 0000 0000 0000

 6

Program Control Instructions

 Control over the flow of program execution and a capability of

branching to different program segments

 One-address instruction:

• Jump: direct addressing

• Branch: relative addressing

Name Mnemonic

Branch BR

Jump JMP

Skip next instruction SKP

Call Procedure CALL

Return from procedure RET

Compare (by subtraction) CMP

Test (by ANDing) TEST

 7

Conditional Branching Instructions

 May or may not cause a transfer of control, depending on
the value of stored bits in the PSR (processor state register)

Branch Condition Mnemonics Test condition

Branch if zero BZ Z=1

Branch if not zero BNZ Z=0

Branch if carry BC C=1

Branch if not carry BNC C=0

Branch if minus BN N=1

Branch if plus BNN N=0

Branch if overflow BV V=1

Branch if no overflow BNV V=0

2

 8

Conditional Branching Instructions

(Contd.)

 Unsigned or signed numbers

Branch Condition Mnemonics Condition Status bits

Branch if higher BH A>B C + Z = 0

Branch if higher or equal BHE A≥B C=0

Branch if lower BL A<B C=1

Branch if lower or equal BLE A≤B C + Z =1

Branch if equal BE A=B Z=1

Branch if not equal BNE A≠B Z=0

Branch Condition Mnemonics Condition Status bits

Branch if greater BG A>B (N V) + Z = 0

Branch if greater or equal BGE A≥B N V=0

Branch if less BL A<B N V=1

Branch if less or equal BLE A≤B (N V) + Z =1

+

+

+

+

 9

Read
register 1

Read
register 2

write
register

write
data

Read
data 1

Read
data 2 ALU

 Zero

Register file

instruction

Sign
extend

Shift
left 2

32 16

PC +4 from instruction fetch network

sum

Branch

target

To branch
control logic

Datapath for Branch instruction

 10

Procedure Call and Return Instructions

 Procedure: self-contained sequence of instructions that

performs a given computational task

 Call procedure instruction: one-address field

• Stores the value of the PC (return address) in a temporary location

• The address in the call procedure instruction is loaded into the PC

 Final instruction in every procedure: return instruction

• Take the return address and load into the PC

 Temporary Location: fixed memory location, processor

register or memory stack

• E.g. stack

 Procedure call: SP  SP-1; M[SP]  PC+4; PC  Effective address

 Return: PC M[SP]; SP SP+1

 11

Procedure Calls

call fun1

Program

memory

fun1

return

 12

Program Interrupt

 Handle a variety of situations that require a departure
from the normal program sequence to another
service program, similar to a call procedure

 Different from procedure calls:
• Initiated at an unpredictable point in the program, rather than

the execution of an instruction

• Address of the interrupt service is determined by a hardware
procedure

• The information that defines all or part of the contents of the
register set, rather than only the PC, should be stored
temporarily

 After finishing interruption, resume to the same state
before the interruption
• PSR: other than condition codes, also contains what

interrupts allowed, user/system mode indication, etc.

 13

Type of Interrupts

 Hardware interrupts
• External interrupts:

 input/output devices requesting transfer of data

 timing devices time-out event

 circuit monitoring the power supply detect an impending power
failure, in the ISP transfers the register set contents to
nondestructive storage like disk, etc.

 any other external source

• Internal interrupts (traps):

 Invalid or erroneous use of an instruction

 Arithmetic overflow, attempt to divide by zero, an invalid opcode,
memory stack overflow, protection violation

 Software interrupts: initiated by executing an instruction
• System call instructions, change from user mode to system

mode

3

 14

Processing External Interrupts

If EI=1, and current
instruction is completed,
acknowledge interrupts
by:

SP SP-1

M[SP]  PC

SP SP-1

M[SP] PSR

EI0

INTACK 1

PC IVAD

External Interrupts

Interrupt vector

address

Central processing unit

(CPU)

1

2

3

4

End of execution

 of instruction

EI

PC
To memory
stack

Interrupt Acknowledge INTACK

IVAD

Enable-interrupt
flip-flop

