
1

ECE 3401 Lecture 8

Sequential Statements

Sequential Statements

 There are six variants of the sequential
statement, namely:

• PROCESS Statement

• IF-THEN-ELSE Statement

• CASE Statement

• LOOP Statement

• WAIT Statement

• ASSERT Statement

2

3. Loop Statement

 The LOOP statement provides a mechanism to repeatedly
execute a sequence of statements. VHDL provides two
types of loop statements:

• FOR LOOP

• WHILE LOOP.

FOR LOOP Statement

 FOR LOOP syntax:

 [loop_label :]

 FOR variable_name IN range LOOP

 sequential_statements

 END LOOP [loop_label];

 The sequential_statements within the loop will be
repeatedly executed within the range specified.

3

Example

FOR i IN 0 to 3 LOOP

 IF vect(i) = „1‟ THEN

 value := value + 2**i;

 ENDIF;

END LOOP;

After the fourth pass, the loop range will be exceeded and the loop will
terminate.

A feature of VHDL: unlike most programming languages, the range
variable i was not declared. Any range variable used within the FOR
construct does not have to be declared. The same range identifier can
be used repeatedly from one loop statement to the next.

Example

FOR i IN 3 downto 0 LOOP

 IF vect(i) = „1‟ THEN

 value := value + 2**i;

 ENDIF;

END LOOP;

Has the same behavior as previous example. Only
difference is that the range is descending.

4

WHILE LOOP Statement

 WHILE LOOP Syntax:

 [loop_label :]

 WHILE boolean_expression LOOP

 sequential_statements

 END LOOP [loop_label];

 The boolean_expression condition is evaluated, and if it is

true the sequential_statements within the loop statement

are evaluated until the condition is no longer true.

 NEXT and EXIT statements are the two
statements that can be used inside the loop
statement
• NEXT: terminate a loop iteration

• EXIT: completely terminate the loop statement

NEXT & EXIT Loop Termination Statements

5

4. Sensitivity List vs. Wait Statement

 The process statement contains only one sensitivity list.
A process with a sensitivity list can only be triggered by
an event on a signal in the list.

 Once triggered, the process will sequentially execute all
of statements in the statement region and then suspend
until another event is detected on those signals.

 If multiple signals are included in the sensitivity list, any
one of those signals in the list can trigger the process.
Therefore, the use of sensitivity list in a process is fairly
limited.

• To provide greater flexibility for the control of execution of a
process, a WAIT statement can be used.

Wait Statement

 The WAIT statement provides the user with more options than

the process sensitivity list.

 Advantage:

It can be placed anywhere within the process body.

With the process sensitivity list the process suspends at the

end of the process.

With the WAIT statement, the suspension occurs where a WAIT

statement is encountered.

 There is no limitation to the number of WAIT statements

within a process.

 WAIT statements are more flexible.

6

Wait Statement

 WAIT statements stop the process execution.
• The process is continued when the instruction is fulfilled

 Four types of wait statements:
• wait on signal_list; -- wait for a signal event

 WAIT ON clock, clear, reset, D;

• wait until condition; -- wait for true condition (requires

an event)
WAIT UNTIL (clock = „1‟);

WAIT UNTIL (clock =„1‟) or (clear = „0‟);

• wait for specific_time; -- wait for a specific time
WAIT FOR 10ns;

• wait; -- indefinite (process is never reactivated)

 Wait statements must not be used in processes

with sensitivity list

PROCESS (clk)

BEGIN

 clk <= NOT (clk) AFTER 50ns;

END PROCESS;

PROCESS

BEGIN

 clk <= NOT (clk) AFTER 50ns;

 WAIT ON clk;

END PROCESS;

Sensitivity List & Wait Statement

A process with sensitivity is functionally equivalent to a process

statement with a WAIT statement as the last statement within

the process.

If a process does not have a sensitivity list and

does not have a WAIT statement contained within

it, the process will loop forever during initialization.

This is important to remember !

7

Example: D Flip-Flop Model

architecture BEH_1 of FF is

begin
 process
 begin
 wait on CLK;

 if (CLK = '1') then
 Q <= D;
 end if;

 end process;
end BEH_1;

 architecture BEH_2 of FF is
begin
 process

 begin
 wait until CLK='1';
 Q <= D;
 end process;
end BEH_2; =

entity FF is
 port (D, CLK : in bit;
 Q : out bit);

end FF;

Example: Testbench Stimuli Generation

STIMULUS: process
begin
 SEL <= `0`;
 BUS_B <= "0000";
 BUS_A <= "1111";
 wait for 10 ns;

 SEL <= `1`;
 wait for 10 ns;

 SEL <= `0`;
 wait for 10 ns;

 wait;
end process STIMULUS;

Via 'wait for' construct it is
very easy to generate simple
input patterns for design
verification purposes.

 Wait for constructs are
excellent tool for describing
timing specifications.

8

WAIT Statements and Behavioral

Modeling

 It is easy to implement a bus protocol for simulation.

 The timing specification can directly be translated to

simulatable VHDL code.

• This behavioral modeling can only be used for simulation

purposes as it is definitely not synthesizable.

READ_CPU : process
begin
 wait until CPU_DATA_VALID = `1`;
 CPU_DATA_READ <= `1`;
 wait for 20 ns;
 LOCAL_BUFFER <= CPU_DATA;
 wait for 10 ns;
 CPU_DATA_READ <= `0`;
end process READ_CPU;

5. Assertion Statement

 Check that expected conditions are met within

the model

 Both concurrent and sequential statement, can

be included anywhere in a process body

 [label :]ASSERT boolean_expression

 [REPORT expression]

 [SEVERITY severity_level];

 Severity_level: predefined enumeration type

• TYPE severity_level IS (note, warning, error, failure)

9

Example

assert (last_position-first_position + 1) = number_of_entries

report “inconsistency in buffer model”

severity failure;

 Both report and severity clauses are optional

• Default report string is: “Assertion violation”

• Default severity level is: error

Concurrent Assertion Statement Example

architecture functional of S_R_flipflop is

begin

 q<=‘1’ when s=‘1’ else

 ‘0’ when r=‘1’;

 q_n<=‘0’ when s=‘1’ else

 ‘1’ when r=‘1’;

 check: assert not (s=‘1’ and r=‘1’)

 report “Incorrect use of S_R_flip_flop: s and r both

‘1’”;

End architecture functional;

10

Process Using Signals and Corresponding

Simulation Output

entity dummy is

end dummy

architecture sig of dummy is

signal trigger, sum : integer :=0;

signal sig1: integer :=1;

signal sig2: integer :=2;

signal sig3: integer :=3;

begin

 process

 begin

 wait on trigger;

 sig1 <= sig2+sig3;

 sig2 <= sig1;

 sig3 <= sig2;

 sum <= sig1 + sig2 + sig3;

 end process;

end sig;

At 10ns, trigger

changes to „1‟

Process Using Variables and Corresponding

Simulation Output

entity dummy is

end dummy

architecture var of dummy is

signal trigger, sum : integer :=0;

begin

 process (trigger)

 variable var1: integer :=1;

 variable var2: integer :=2;

 variable var3: integer :=3;

 begin

 var1 := var2+var3;

 var2 := var1;

 var3 := var2;

 sum <= var1 + var2 + var3;

 end process;

end var;

At 10ns, trigger

changes to „1‟

