Placement

Mohammad Tehranipoor
ECE Department

Placement and Floorplanning

- Layout maps the structural representation of circuit into a physical representation

- Physical representation:
 - Geometric coordinates for all the circuit elements and the wiring that interconnects the elements

- A circuit is represented by:
 - list of circuit elements
 - list of signals (nets) indicating terminals to be connected together
Important Features

- Layout has two important functions:
 - Positioning of components (Placement)
 - Interconnecting the components (Routing)
- Placement and Routing are interdependent
 - A fully auto place-n-route (PNR) system should be able to perform task simultaneously.
 - Each problem is so complex.
 - At most, iterative approach is practical.

Placement Problem

- Placement is a key step in physical design cycle.
- Definitions:
 - Position of component is its physical location and an orientation.
 - Pins on components define locations where circuitry within component connects the interconnect between components.
 - Subset of pins that are to be electrically connected form a net.
Placement Problem

- Depending on the IC design style Placement has different goals:
 - Placement can affect Router
 - Placement should concentrate on minimizing the length of interconnection or area
 - Delays and design performance greatly depend on placement

Input/Output of Placement

- Input:
 - Set of fixed blocks
 - Number and location of terminals for each block
 - Netlist
 - Block’s dimensions

- Output
 - Exact location of blocks
 - Location of pins assigned to each component
Placement at Various Levels

- **System Level:**
 - Place all the PCBs together so that
 - The area occupied is minimum.
 - Heat is dissipated properly.

- **Board Level:**
 - All the chips must be placed within a fixed area of the PCB.
 - All blocks are fixed and rectangular/square in shape.
 - Some chips may be pre-placed
 - Minimize routing layers
 - Heat dissipation

- **Chip Level:**
 - Limited number of layers
 - Minimum area
 - Performance

Objectives

- Normally we are given the maximum chip area
- Placement should define locations such that
 - All elements get connected (routability)
 - Routing area is minimized
 - **Routability** and **Performance** are the measures of good Placement

- **Routability:**
 - Depends on number of factors such as Router being used.
 - Minimum routing area can *only* be estimated

- **Performance:**
 - Depends on wirelengths.
Objectives of a Good Placement

- Minimize area (total wiring area)
- Ensure routability
- Avoid signal interference
- Distribute heat
- Maximize performance

Poor Placement

- Consumes large areas
- Results in performance degradation
- Results in difficult and sometimes impossible tasks (Routing)

- An ill-placed layout cannot be improved by high quality routing.
Placement Methodology

Goals:
- Time, Performance, ...

Placement

- Minimize Wirelength, Maximize Routability

- Assume $d_s =$ total wirelength estimated for each net
- $\sum_{\text{all nets}} d_i = N_d =$ total estimated wirelength of the layout

Objective:
- *Place such that N_d is to be minimized*

Placement Problem Formulation

- Given an electrical circuit consisting of fixed blocks and a netlist interconnecting terminals on the periphery of these blocks
 - Let $B_1, B_2, ..., B_n$ be the blocks to be placed.
 - Each $B_i, 1 \leq i \leq n$, has h_i and w_i.
 - Let $N = \{N_1, N_2, ..., N_m\}$ be the set of nets.
 - Let $Q = \{Q_1, Q_2, ..., Q_k\}$ be the rectangular empty areas allocated for routing between the blocks.
 - Let L_i denote the estimated length of net $N_i, 1 \leq i \leq m$.
Cont.

- Construct a layout indicating the positions of each block such that:
 - No two rectangles overlap
 - Placement is routable
 - The total area of bounding box is minimized
 - The total estimated wirelength is minimized
 - In the case of high performance circuits
 - The length of longest net is also minimized. This problem is known as the *performance driven placement problem*.
 - The algorithm must ensure that the known critical paths lengths are shorter than a predefined value.

- Placement problem is NP-complete.

Topological Congestion

- The layout area and routability of the layout are approximated by *topological congestion*.

Less Congestion
Wirelength

- The actual wiring paths are not known at the time of placement.

- **Minimum spanning tree** representations are the most commonly used structures to connect a net in the placement phase.
 - MST is also used in Global routing phase.

- Optimal wiring paths for a net can be obtained using **Rectilinear Steiner Tree**.
 - RST is used in detailed routing phase.

Design Style Specific Placement

- Different design styles impose different restrictions on the layout and have different objectives in placement problems.

- **Full Custom:**
 - No restriction on how the blocks can be placed.
 - No two blocks overlap.
 - Minimize the total layout area.
 - The irregularity of block shapes is the main cause of unused areas (dead space).
 - Minimize the unused areas.
 - The objective of minimizing the layout area sometimes conflicts with the objective of minimizing the maximum length of a net.
 - In high performance circuit design, additional constraints on net length are considered.
Design Style Specific Placement

- **Standard Cells:**
 - Simpler than the full custom placement problem
 - Cells have same height.
 - Cells are placed in rows.
 - Minimizing area is equivalent to minimizing the summation of channel heights and minimizing the width of the widest row.
 - All rows usually have equal widths.
 - This may not be the case when using large standard cells.
 - Total area:
 - Required area for cells
 - Required area for channels
 - With advent of over-the-cell routing, the channels in the standard cells have almost disappeared (*channel-less standard cell designs*).
 - Same for metal layers

Design Style Specific Placement

- **Gate Array:**
 - We already have
 - Logic prefabricated
 - Limited routing area
 - Placement tries to find mappings for circuit elements that ensures routability in limited space
 - Minimizing routing area is not as important as ensuring routability by minimizing congestion
Placement Algorithms

- Partitioning-Based Algorithms
- Simulation-Based Algorithms
 - Simulated Annealing
 - Genetic Algorithm
- Performance-Driven Placement Algorithm

Partitioning-Based Algorithms

Breuer’s Algorithms:
- The main idea for Breuer’s algorithm is to reduce the number of nets being cut when the circuit is partitioned.

Given
- \(E = \{e_1, e_2, \ldots, e_n\} \) a set of elements
- \(S = \{s_1, s_2, \ldots, s_m\} \) a set of signals (nets)
- \(L = \{l_1, l_2, \ldots, l_p\}, \ p \geq n \) a set of locations
- Assign each element to unique location such that something is minimized.
Min-cut Placement

- Various objective functions have been developed for this method.
 - Total net-cut (Min-cut) objective function
 - Min-max cut value objective function
 - Sequential cut line objective function

Min-cut Objective Function

- Let a layout be divided into smaller blocks using horizontal/vertical lines.
- For each line i, let C_i be the # of wires cut by line i

$$v(i) = \sum_{\text{all } i} C_i$$

- Placement procedures that minimize the value of $v(i)$ are called *Min-cut Placement Algorithms*.
Min-max Cut Value Objective Function

- In case of standard cells and gate arrays, the channel width depends on the number of nets that are routed through the channel.
- The more the number of nets the larger is the channel width.
- The objective function is to reduce the number of nets cut by the cut line across the channel.
 - This will reduce the congestion in channels.

Sequential Cut Line Objective Function

- It is very difficult to compute the minimum net cuts.
- Find cut lines $c_1, c_2, c_3, \ldots c_n$ in sequential manner such that:

 \[
 \min \{ \nu(c_n) \} \text{ subject to } \\
 \min \{ \nu(c_{n-1}) \} \text{ subject to } \\
 \cdot \\
 \cdot \\
 \min \{ \nu(c_1) \}
 \]
Placement Procedures

- Cut Oriented Min-Cut Placement
- Quadrature Placement
- Bisection Placement
- Slice/Bisection Placement

Min-cut Placement

- Partitioning is represented as a tree:

```
    Full layout
     /     \
    2     3
   /     /  \
  4     5    6
 /     /     /  \
4     8     9    10
 /     /     /     /
4     5     9     7
 /     /     /     /
4     8     9     7
```
Cut Oriented Min-Cut Placement Alg

- This partitioning procedure is sequential and easy to implement.
- It does not provide good results.

Quadrature Placement

- QP is the most popular algorithm.
- Bisect layout by a vertical line $\{B_1, B_2\}$
- Cut two blocks by horizontal line $\{B_1 B_2 B_3 B_4\}$
- Cut 4 blocks by V-line
- Stop when each element is placed
Bisection Placement Procedure

- Divide Block into columns (rows) and then into rows (columns)
- This method is usually used for standard cell placement.

Not as effective as Quadrature technique
- Good for standard cell layout
- Does not guarantee the minimization of the maximum net cut per channel
Slice Bisection Placement

- Given n elements
- Divide n elements into sets of k and $n-k$ elements
- Repeat procedure to divide remaining $n-k$ elements into sets of size k and $n-2k$
- Continue till all rows (columns) are formed
- Assign locations to elements in each row by vertical (horizontal) bisection.
- This method is most suitable for circuits which have a high degree of interconnection at the periphery.

```
  1  | 2  | 3
  6a | 6b | 5
```

Group migration

- Group migration method can be used in the partitioning process to minimize the cut size.
Simulated Annealing

Simulated Annealing Based Placement

begin:
T = T_{\text{start}}
placement = init-placement;
while (T > T_{\text{end}}) do
{
 while (! equilibrium) do
 {
 perturb;
delta = new_cost – cost;
if (delta < 0) accept;
else if (random (0, 1) < e^{-delta/T}) accept;
else reject ;
 }
 T = cool_down (T);
}
end
TimberWolf 3.2

- TimberWolf is a standard cell placement algorithm based on Simulated Annealing.
- TimberWolf is one of the most successful placement algorithm.
- In this algorithm, the parameters and functions are taken as follows:
 - Fixed schedule
 - $T_{\text{start}} = 4,000,000$ // Initial temperature
 - $T_{\text{end}} = 0.1$ // Final temperature
 - $\text{Cool_down} = \alpha(T) \times T$
 - $\alpha(T) = 0.8 \rightarrow 0.95 \rightarrow 0.8$

TimberWolf 3.2 (Cont.)

- Perturb
 - Displace a block to a new location
 - Swap two blocks
 - Change orientation of a block

- Cost function
 $$\text{Cost} = \alpha \times \text{wire length} + \beta \times \text{block overlap} + \gamma \times \text{row length overshoot}$$
Automatic Schedule

- Quality of placement depends on:
 - Perturb
 - Cost function
 - Cooling schedule

- Runtime of SA placement depends on:
 - Annealing (cooling) schedule

- Quality Vs Runtime:
 - Non-linear/complex relationship

Perturb

- Displace the current solution as little as possible
 - Swaps, moves and reorients are widely used
 - Affecting too many blocks will not work

- Temperature dependant Range limiters
 - At High T, use the entire device
 - As T lowers, use a smaller window of the device for swap/move targets
Tweak Zones

- Cost function
 - Components, weights
- Perturb
 - Range limiters, moves/swaps etc
- Equilibrium
 - T_{end}

Genetic Algorithm
Genetic Algorithm

- Initial set of placement configurations is called Population, which can be generated randomly.
- The individuals in the population represent a feasible placement.

- SCORE is same as fitness.
- It can be wirelength.
- Three operations:
 - Crossover
 - Mutation
 - Selection

Genetic Algorithm

begin
 no_pop = SIZE-POP;
 no_offspring = no_pop X k;
 pop = CONSTRUCT-POP(no-pop);
 for (i = 1 to no_pop) do
 SCORE(pop(i))
 for (i = 1 to no_generation) do
 for (j = 1 to no_offspring) do
 (x,y) = CHOOSE-PARENT(pop)
 offspring(j) = GENERATE(x,y);
 SCORE(offspring(j));
 pop = SELECT(pop, offspring, no_pop);
 for (j = 1 to no_pop) do
 MUTATE(pop(j));
 Return highest scoring configuration in population
end.
Performance Driven Placement

- The delay at chip level plays an important role in determining performance of the chip.
- As the number of blocks in a chip increases, the size of the chip decreases but may result in longer interconnections between the blocks (performance degradation).
- The placement algorithms for high performance chips have to generate placements which will allow routers to route nets within the timing requirements.
- Also called path-based approach.
- The critical path length must be within its timing constraint.