Floorplanning

Mohammad Tehranipoor
ECE Department

After the circuit partitioning phase:
- The area occupied by each block can be estimated.
- Possible shapes of the blocks can be ascertained.
- Number of terminals required by each block is known.
- The netlist specifying the connections between the blocks is available.

In order to complete the layout, a specific shape needs to be assigned to a block and arrange the blocks on the layout surface.
Physical Design Automation

- **Steps left:**
 - **Floorplanning phase:** Planning and sizing of blocks and interconnects
 - **Placement phase:** Assigning a specific location to blocks.
 - **Routing phase:** Completing interconnections

Floorplanning Phase

- The blocks with known dimensions are called *fixed* blocks.
 - Standard cells
- The blocks for which dimensions are yet to be determined are called *flexible* blocks.
 - Thus we need to determine an appropriate shape for each block, location of each block on the layout surface, and location of pins on the boundary of the blocks.

- **Placement Problem:** Problem of assigning location of fixed blocks on a layout surface.
- **Floorplanning Problem:** Problem of assigning location of flexible blocks on a layout surface.
- The placement problem is a restricted version of the floorplanning problem.
Floorplanning vs. Placement

- Both determine block positions to optimize the circuit performance.

- **Floorplanning:**
 - Details like shapes of blocks, pin assignments, etc. are not yet fixed (blocks with flexible shape are also called **soft blocks**).

- **Placement:**
 - Details like module shapes and I/O pin positions are fixed (blocks with no flexibility in shape are also called **hard blocks**).

Floorplanning Phase

- **Input:**
 - Netlist
 - Number of terminals for each block
 - Set of blocks
 - Area of each block
 - Possible shapes of each block

- **Output:**
 - Shapes and location of blocks
Hierarchical Design

- Q: How to put the blocks together without knowing their shapes and the positions of the I/O pins?
- If we design the blocks first, those blocks may not be able to form a tight packing.
- During floorplanning, we know that area is fixed but dimensions are not known.

Floorplanning Problem

- The floorplanning problem is to plan the positions and shapes of the modules at the beginning of the design cycle to optimize the performance of the circuits:
 - chip area
 - total wirelength
 - delay of critical paths
 - routability
 - others, e.g., noise, heat dissipation, etc.

- In floorplanning several alternatives for each block are considered.
Floorplanning Problem Formulation

- **Given**,
 - A set S of n rectangular modules
 - $S = \{1, 2, \ldots, i, \ldots, n\}$
 - An interconnection matrix $C = [c_{ij}], 1 \leq i, j \leq n$
 - Where c_{ij} indicates connectivity between module i and j.
 - A list of n triples $(A_1, r_1, s_1), \ldots, (A_n, r_n, s_n)$, where A_i is the area of block i, and r_i and s_i are the lower and upper bound constraints on the shape of i.
 - Two additional integers p and q which are lower and upper bound constraints on the shape of the rectangle enveloping the n blocks.

Output

- Area constraint $A_i = w_i \times h_i$, $1 \leq i \leq n$
- $r_i \leq h_i / w_i \leq s_i$
- $p \leq H / W \leq q$

where h / w is called aspect ratio of a block.

Then, r_i and s_i are called aspect ratio of block i.
Bounds on Aspect Ratios

- If there is no bound on the aspect ratios, we may be able to pack very tightly:

- But laying out the blocks as long strips may not necessarily result in best routability and rectangle final layout, so for each block i:

 $$r_i \leq h_i / w_i \leq s_i \quad \text{and} \quad p \leq H/W \leq q$$

Bounds on Aspect Ratios

- We can allow several shapes for each soft block:

- For hard blocks, only the orientations can be changed:
Objective Function

- **Wirelength and Area**
 - A commonly used objective function is a weighted sum of area and wirelength:
 \[\text{Cost} = \alpha A + \beta L \]
 - where \(A \) is the total area of the packing, \(L \) is the total wirelength, and \(\alpha \) and \(\beta \) are constants.
 - \(\alpha \) and \(\beta \) define different weights for \(A \) and \(L \).
 - Minimize Area: \(\alpha=1 \) and \(\beta=0 \)
 - Minimize Wirelength: \(\alpha=0 \) and \(\beta=1 \)
 - Tradeoff: \(\alpha=0.5 \) and \(\beta=0.5 \)

- Total Area of packing: \(A = H \times W \)

Wirelength Estimation

- Exact wirelength of each net is not known until routing is done.
- In floorplanning, even pin positions are not known.
 - The process of identifying pin location is called *pin assignment*.
- A possible wirelength estimation:
 - Center-to-center estimation

![Center-to-center estimation](image)
Deadspace

- Deadspace is the space that is wasted:

- Minimizing area is the same as minimizing deadspace.
- Deadspace percentage is computed as
 \[\left(\frac{A - \sum A_i}{\sum A_i} \right) \times 100\% \]

 \[A = H \times W \]

 \[A_i = w_i \times h_i \]

Design Style Specific Floorplanning Problems

- Floorplanning is not carried out for some design styles.
- Some design styles have blocks with fixed dimensions.
 - Full Custom:
 - Floorplanning needs to be performed.
 - Standard Cell:
 - Dimensions of cells are fixed. Therefore, floorplanning is simply a placement problem. Neither floorplanning nor pin assignment is required.
 - For large standard cells, floorplanning may be required if the cell is partitioned into several blocks. (Cell-level floorplanning)
 - Gate Array:
 - Floorplanning problem is placement problem.
Classification of Algorithms

- Floorplanning methods can be classified as:
 - Constraint Based methods
 - Construct a floorplan of **optimal area** that satisfies a given set of constraints.
 - (Integer) Linear Programming Methods
 - Rectangular Dualization Based Methods
 - Hierarchical Tree Based Methods
 - Simulated Annealing and Genetic Algorithms
 - Timing Driven Floorplanning Algorithms

Integer Programming Based Floorplanning

- **LP:**
 - The objective is a linear function.
 - All constraints are linear functions.
 - Some variables are real numbers and some are integers, i.e., “**mixed integer**”.

- It is almost like a linear program, except that some variables are integers.
Problem Formulation

- **Minimize the packing area:**
 - Assume that one dimension W is fixed.
 - Minimize the other dimension Y.

- Need to have constraints
 - Overlap constraints
 - Prevent any two blocks from overlapping
 - Routability constraints
 - Estimate the routing area required between the blocks

- Associate each block B_i with 4 variables:
 - x_i and y_i: coordinates of its lower left corner.
 - w_i and h_i: width and height.

Non-overlapping Constraints for Fixed Blocks

- For two non-overlapping blocks B_i and B_j, at least one of the following four linear constraints must be satisfied:

 1. $x_i + w_i \leq x_j$ if B_i is to the left of B_j
 2. $x_i - w_i \geq x_j$ if B_i is to the right of B_j
 3. $y_i + h_i \leq y_j$ if B_i is below B_j
 4. $y_i - h_i \geq y_j$ if B_i is above B_j

The "or" condition is not understood in LP.
Integer Variables

- Use integer (0 or 1) variables x_{ij} and y_{ij}:
 - $x_{ij}=0$ and $y_{ij}=0$ if (1) is true.
 - $x_{ij}=0$ and $y_{ij}=1$ if (2) is true.
 - $x_{ij}=1$ and $y_{ij}=0$ if (3) is true.
 - $x_{ij}=1$ and $y_{ij}=1$ if (4) is true.
- Let W and H be upper bounds on the total width and height. Non-overlapping constraints:
 \[
 \begin{align*}
 (1') & \quad x_i + w_j \leq x_j + W(x_{ij} + y_{ij}) \\
 (2') & \quad x_i - w_j \geq x_j - W(1 + x_{ij} - y_{ij}) \\
 (3') & \quad y_j + h_i \leq y_j + H(1 - x_{ij} + y_{ij}) \\
 (4') & \quad y_j - h_i \geq y_j - H(2 - x_{ij} - y_{ij})
 \end{align*}
 \]
- Only one of the above equations will be active and other equations will be true depending on the value of x_{ij} and y_{ij}.

Formulation

Min. Y
\[
\begin{align*}
\text{s.t.} & \quad 0 \leq x_i, x_i + w_j \leq W \\
& \quad 0 \leq y_j, y_j + h_i \leq H \\
& \quad x_i + w_j \leq x_j + W(x_{ij} + y_{ij}) \\
& \quad x_i - w_j \geq x_j - W(1 + x_{ij} - y_{ij}) \\
& \quad y_j + h_i \leq y_j + H(1 - x_{ij} + y_{ij}) \\
& \quad y_j - h_i \geq y_j - H(2 - x_{ij} - y_{ij}) \\
& \quad x_{ij} = 0 \text{ or } 1 \\
& \quad y_{ij} = 0 \text{ or } 1
\end{align*}
\]
Formulation with Hard Blocks

If the blocks can be rotated, use a 0-1 integer variable z_i for each block B_i: $z_i = 0$ if B_i is in the original orientation and $z_i = 1$ if B_i is rotated 90°.

\[
\begin{align*}
\text{Min. } Y \\
\text{s.t. } & 0 \leq x_i, y_i, z_i h_i + (1-z_i)w_i \leq W \\
& 0 \leq y_i, y_i + z_i w_i + (1-z_i)h_i \leq Y \\
& x_i + z_i h_i + (1-z_i)w_i \leq x_j + W(x_j + y_j) \\
& x_i - z_i h_j - (1-z_j)w_j \geq x_j - W(1+x_j - y_j) \\
& y_i + z_i w_i + (1-z_i)h_i \leq y_j + H(1-x_j + y_j) \\
& y_i - z_i w_j - (1-z_j)h_j \geq y_j - H(2-x_j - y_j) \\
& x_i = 0 \text{ or } 1 \\
& y_i = 0 \text{ or } 1
\end{align*}
\]

Non-overlapping Constraints for Flexible Blocks

- Flexible blocks can take rectangular shapes within a limited aspect ratio range.
- If B_i is a soft block, $w_i/h_i=A_j$. But this constraint is quadratic!
- This non-linear area relation is linearized by taking the first two terms of the Taylor expression of $h_i=A_j/w_i$ at w_{imax} (maximum width of block B_i).

\[
\begin{align*}
\hat{h}_i &= h_{imin} + \Delta w_i \lambda_i \\
\hat{h}_i &= h_{imin} + \lambda_i (w_{imax} - w_i) \\
\text{where } h_{imin} &= A_j/w_{imax} \text{ and } \lambda_i = A_i/w_{imax}^2
\end{align*}
\]
Formulation with Soft Blocks

- If B_i is soft and B_j is hard:

 \begin{align*}
 (1) & \quad x_j + w_t \leq x_j + W (x_q + y_q) \\
 (2) & \quad x_j - w_j \geq x_j - W (1 + x_q - y_q) \\
 (3) & \quad y_j + h_{\text{min}} + \lambda_j (w_{\text{max}} - w_t) \leq y_j + H (1 - x_q + y_q) \\
 (4) & \quad y_j - h_j \geq y_j - H (2 - x_q - y_q)
 \end{align*}

- If both B_i and B_j are soft:

 \begin{align*}
 (1) & \quad x_j + w_t \leq x_j + W (x_q + y_q) \\
 (2) & \quad x_j - w_j \geq x_j - W (1 + x_q - y_q) \\
 (3) & \quad y_j + h_{\text{min}} + \lambda_j (w_{\text{max}} - w_t) \leq y_j + H (1 - x_q + y_q) \\
 (4) & \quad y_j - h_{\text{min}} - \lambda_j (w_{\text{max}} - w_j) \geq y_j - H (2 - x_q - y_q)
 \end{align*}

Solving Linear Program

- Linear Programming (LP) can be solved by classical optimization techniques in \textit{polynomial time}.
- CPLEX can be used to solve the problem.
- Floorplanning is a mixed integer linear programming (MILP) problem.
- MILP is NP-Complete.
 - The run time of the best known algorithm is exponential to the number of variables and equations.
Complexity

- For a problem with n blocks, and for the simplest case, i.e., all blocks are hard:
 - $4n$ continuous variables (x_i, y_i, w_i, h_i)
 - $n(n-1)$ integer variables (x_{ij}, y_{ij})
 - $2n^2$ linear constraints

- Practically, this method can only solve small problems ($n \approx 10$).

Rectangular Dualization

- It’s a heuristic.
- The output from a partitioning algorithm can be represented as a graph $G=(V,E)$.
 - The vertices of the graph correspond to the subcircuits and the edges represent the interconnections between the subcircuits.

- Rectangular dualization:
 - The floorplan can be obtained by converting the graph into its rectangular dual.

- Advantage:
 - Use of rectangular dualization maximizes adjacency of blocks that are heavily connected.
Rectangular Dualization

If there is no connections between E and J, then they should not be next to each other in the layout surface.

Successive Augmentation

- A classical greedy approach to keep the problem size small: Repeatedly pick a small subset of blocks to formulate a MILP, solve it together with the previously picked blocks with fixed locations and shapes:
Floorplanning Using SA and GA

- Floorplanning using simulated annealing and genetic algorithms requires correct problem representation.
- Few things to think about before implementing SA or GA:
 - **GA**: Fitness **Encoding**, Crossover, Mutation
 - **SA**: Encoding, Fitness, Boltzman Distribution, Cooling Schedule, Neighborhood Function

Terminology

- **Rectangular Dissection**
 - It is a subdivision of a given rectangle by a finite number of horizontal and vertical line segments into a finite number of non-overlapping rectangles.
Terminology

- **Slicing Structure**
 - A rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.

- **Slicing Tree**
 - A slicing structure can be modeled by a binary tree with n leaves and $n-1$ nodes, where each node represents a vertical cut line or a horizontal cut line, and each leaf a basic rectangle.
Slicing and Non-Slicing Floorplans

- A floorplan that corresponds to a slicing structure is called a *slicing floorplan*.
- Otherwise it is a *non-slicing floorplan*.
 - Often called as *wheel*.

Terminology

- An expression, $E = e_1, e_2, \ldots, e_{2n}$, where $e \in \{1, 2, \ldots, n, H, V\}$, $1 \leq i \leq 2n-1$, is a *Polish Expression* of length $2n-1$ iff
 - every operand j, $1 \leq j \leq n$, appears exactly once in the expression, and
 - the expression E has the balloting property, i.e., for every sub-expression $E_i = e_1, e_2, \ldots, e_i$, $1 \leq i \leq 2n-1$, the number of operands is greater than the number of operators.
Example

Polish Expression

\[E=67H2V75VH34HV \]

Example

Polish Expression

\[E=16H2V75VH34HV \]

\[E=34H25HV16H7HV \]

\[E=67H1H25HV34HV \]

One Layout and many slicing trees !!
Normalized Polish Expressions

- An expression, \(E = e_1, e_2, ..., e_{2n-1} \), where \(e_i \in \{1, 2, ..., n, H, V\} \), \(1 \leq i \leq 2n-1 \), is a **Normalized Polish** expression of length iff \(E \) has no consecutive \(H \)'s and \(V \)'s.

Example:

\[
\begin{array}{c}
\text{V} \\
\text{H} \\
\text{7} \\
\text{2} \\
\text{5} \\
\text{3} \\
\text{4} \\
\text{1} \\
\text{6} \\
\end{array}
\]

\(E = 16H7H25HV34HV \)

Simulated Annealing Algorithm

- Represent floorplan by normalized polish expression

- Perturb using moves
 - **M1**: Swap two adjacent operands
 - **M2**: Complement some chain
 - **M3**: Swap two adjacent operand and operator

- Optimize cost
 \[
 \text{Cost} = \alpha A + \beta L
 \]
Examples of Moves

- **Swap two adjacent operands**
 - **M1**
 - 34V2H5V1H
 - 32V4H5V1H

- **Complement some chain**
 - **M2**
 - 32V45VH1H

- **Swap two adjacent operand and operator**
 - **M3**
 - 32V4H5V1H

Pin Assignment

- The purpose of pin assignment is to define the signal that each pin will receive.
- Pin assignment may be done during floorplanning, placement or after placement is fixed.
 - If the blocks are not designed then good assignment of nets to pins can improve the placement.
 - If the blocks are already designed, it may be possible to exchange a few pins.
Pin Assignment

- **Functionally equivalent pins:**
 - Two pins are functionally equivalent if exchanging signals does not affect the circuit.
 - E.g. two inputs of a gate are functionally equivalent.

- **Equipotential pins:**
 - Two pins are equipotential pins if both are internally connected and hence represent the same net.
 - E.g. the output of a gate is equipotential pin if it is available on both sides.

Example
Impact of Pin Assignment

Problem Formulation

- Optimize the assignment of nets within a functionally equivalent pin groups or assignment of nets within an equipotentially pin group. That results in:

- Objective:
 - Minimize congestion or the number of crossovers.