Chapter 10
Practical Database Design Methodology and Use of UML Diagrams
Chapter 10 Outline

- The Role of Information Systems in Organizations
- The Database Design and Implementation Process
- Automated Database Design Tools
Practical Database Design Methodology and Use of UML Diagrams

- Design methodology
 - Target database managed by some type of database management system
- Various design methodologies
- Large database
 - Several dozen gigabytes of data and a schema with more than 30 or 40 distinct entity types
The Role of Information Systems in Organizations

- Organizational context for using database systems
 - Organizations have created the position of database administrator (DBA) and database administration departments
 - Information technology (IT) and information resource management (IRM) departments
 - Key to successful business management
The Role of Information Systems in Organizations

- Database systems are integral components in computer-based information systems
- Personal computers and database system-like software products
 - Utilized by users who previously belonged to the category of casual and occasional database users
- **Personal databases** gaining popularity
- Databases are distributed over multiple computer systems
 - Better local control and faster local processing
Organizational Context for using Database Systems

- Consolidation of data across organization
- Maintenance of complex data
- Simplicity of developing new applications
- Data independence
 - Protecting application programs from changes in the underlying logical organization and in the physical access paths and storage structures
- External Schemas
 - Allow the same data to be used for multiple apps with each application having its own view of the data
The Role of Information Systems in Organizations

- **Data dictionary systems or information repositories**
 - Mini DBMSs
 - Manage *meta-data*

- **High-performance transaction processing systems require around-the-clock nonstop operation**
 - Performance is critical
The Information System Life Cycle

- **Information system (IS)**
 - Resources involved in collection, management, use, and dissemination of information resources of organization
The Information System Life Cycle

- **Macro life cycle**
 - Feasibility analysis
 - Requirements collection and analysis
 - Design
 - Implementation
 - Validation and acceptance testing
 - Requirements collection and analysis
Phases of Information System Life Cycle

- Feasibility Analysis
 - Analyzing potential application areas
 - Identifying the economics of information gathering and dissemination
 - Performing cost benefit studies
 - Setting up priorities among applications

- Requirement Collection and Analysis
 - Detailed Requirements Collection
 - Interaction with Users

- Design
 - Design of Database System
 - Design of programs that use and process the database
Phases of Information System Life Cycle

- Implementation
 - Information system is implemented
 - Database is loaded & its transactions are implemented and tested

- Validation and Acceptance Testing
 - Testing against user’s requirements
 - Testing against performance criteria

- Deployment, Operation and Maintenance
 - Data conversion
 - Training
 - System maintenance
 - Performance monitoring
 - Database tuning
The Information System Life Cycle

- The database application system life cycle: micro life cycle
 - System definition
 - Database design
 - Database implementation
 - Loading or data conversion
The Information System Life Cycle

- Application conversion
- Testing and validation
- Operation
- Monitoring and maintenance
Database System Life Cycle

- System definition
 - Defining scope of database system, its users and applications
- Database Design
 - Logical and physical design of the database system on the chosen DBMS
- Database implementation
 - Specifying conceptual, external and internal database definitions
 - Creating empty database files
 - Implementing software applications
Database System Life Cycle

- Loading or data conversion
 - Populating the database
- Application conversion
 - Converting applications to the new system
- Testing and validation
- Operation
 - Running the new system
- Monitoring and maintenance
 - System maintenance
 - Performance monitoring
The Database Design and Implementation Process

- Design logical and physical structure of one or more databases
 - Accommodate the information needs of the users in an organization for a defined set of applications

- Goals of database design
 - Very hard to accomplish and measure

- Often begins with informal and incomplete requirements
The Database Design and Implementation Process

- Main phases of the overall database design and implementation process:
 - 1. Requirements collection and analysis
 - 2. Conceptual database design
 - 3. Choice of a DBMS
 - 4. Data model mapping (also called logical database design)
 - 5. Physical database design
 - 6. Database system implementation and tuning
Figure 10.1
Phases of database design and implementation for large databases.

Phase 1: Requirements collection and analysis

Phase 2: Conceptual database design

Phase 3: Choice of DBMS

Phase 4: Data model mapping (logical design)

Phase 5: Physical design

Phase 6: System implementation and tuning

Data content, structure, and constraints

Data requirements

Conceptual Schema design (DBMS-independent)

Logical Schema and view design (DBMS-dependent)

Internal Schema design (DBMS-dependent)

DDL statements SDL statements

Database applications

Processing requirements

Transaction and application design (DBMS-independent)

Frequencies, performance constraints

Transaction and application implementation
The Database Design and Implementation Process

- Parallel activities
 - Data content, structure, and constraints of the database
 - Design of database applications
- Data-driven versus process-driven design
- Feedback loops among phases and within phases are common
The Database Design and Implementation Process

- Heart of the database design process
 - Conceptual database design (Phase 2)
 - Data model mapping (Phase 4)
 - Physical database design (Phase 5)
 - Database system implementation and tuning (Phase 6)
Phase 1: Requirements Collection and Analysis

- Activities
 - Identify application areas and user groups
 - Study and analyze documentation
 - Study current operating environment
 - Collect written responses from users
Phase 1

- Requirements specification techniques
 - Oriented analysis (OOA)
 - Data flow diagrams (DFDs)
 - Refinement of application goals
 - Computer-aided
Phase 2: Conceptual Database Design

- Phase 2a: Conceptual Schema Design
 - Important to use a conceptual high-level data model
 - Approaches to conceptual schema design
 - Centralized (or one shot) schema design approach
 - View integration approach
Phase 2:

- Strategies for schema design
 - Top-down strategy
 - Bottom-up strategy
 - Inside-out strategy
 - Mixed strategy

- Schema (view) integration
 - Identify correspondences/conflicts among schemas:
 - Naming conflicts, type conflicts, domain (value set) conflicts, conflicts among constraints
 - Modify views to conform to one another
 - Merge of views and restructure
Strategies for Schema Design

- Top Down Strategy
 - Start with a schema containing high-level abstractions and then apply successive top-down refinements.
Strategies for Schema Design

- **Bottom-Up Strategy**
 - Start with a schema containing basics abstractions and then combine or add to these abstractions.

Figure 12.3
Examples of bottom-up refinement.
(a) Discovering and adding new relationships.
(b) Discovering a new category (union type) and relating it.
Strategies for Schema Design

- Inside-out Strategy
 - Start with central set of concepts and then spread outward by considering new concepts in the vicinity of existing ones

- Mixed Strategy
 - Use a combination of top-down and bottom-up strategies
Phase 2:

- Strategies for the view integration process
 - Binary ladder integration
 - N-ary integration
 - Binary balanced strategy
 - Mixed strategy

- Phase 2b: Transaction Design
 - In parallel with Phase 2a
 - Specify transactions at a conceptual level
 - Identify input/output and functional behavior
 - Notation for specifying processes
View Integration Strategies

- **Binary Ladder Integration**
 - Two similar schemas are integrated first and the resulting schema is then integrated with another schema
 - The process is repeated until all schemas are integrated

- **N-ary Integration**
 - All views are integrated in one procedure after analysis and specification of their correspondences
 - Requires computerized tools for large designs
View Integration Strategies

- Binary Balanced Strategy
 - Pairs of schemas are integrated first and the resulting schemas are then paired for further integration.
 - This process is repeated until a final global schema

- Mixed Strategy
 - Schemas partitioned into groups based on their similarity; each group integrated separately.
 - This process is repeated until a final global schema
Conceptual Schema Design

- **Goal**
 - Complete understanding of the database structure, semantics, interrelationships and constraints
 - Serves as a stable description of the database contents
 - Good understanding crucial for the users and designers
 - Diagrammatic description serves as an excellent communication tool
Desired Characteristics of Conceptual Data Model

- **Expressiveness**
 - Able to distinguish different types of data, relationships and constraints

- **Simplicity and Understandability**
 - Easy to understand

- **Minimality**
 - Small number of distinct basic concepts

- **Diagrammatic Representation**
 - Diagrammatic notation to represent conceptual schema

- **Formality**
 - Formal unambiguous specification of data
Approaches to Conceptual Schema Design

- **Centralized Schema Design Approach**
 - Also known as one-shot approach
 - Requirements of different applications and user groups are merged into a single set of requirements and a single schema is designed
 - Time consuming, places the burden on DBA to reconcile conflicts

- **View Integration Approach**
 - Schema is designed for each user group or application
 - These schemas are then merged into a global conceptual schema during the view integration phase
 - More practical
Schema Integration

- Identifying correspondence and conflict among different schemas
 - Naming conflicts
 - Synonyms: The same concept but different names
 - e.g. entity types CUSTOMER and CLIENT
 - Homonyms: Different concepts but same name
 - e.g. entity type PART as computer parts and furniture parts
 - Type Conflicts: Representing the same concept by different modeling constructs
 - e.g. DEPARTMENT may be an entity type and an attribute
 - Domain Conflicts: Attribute has different domains
 - Also known as value set conflicts
 - e.g. SSN as an integer and as a character string
 - Conflict among constraints: Two schemas impose different constraints
 - e.g. different key of an entity type in different schemas
Schema Integration

- Modifying views to conform to one another
 - Modifying schemas to conform to one another

- Merging of views
 - Merging Schemas to create a global schema
 - Specifying mappings between views and global schema
 - Time consuming and difficult

- Restructuring
 - Simplifying and restructuring to remove any redundancies
View Integration Strategies

Figure 12.6
Different strategies for the view integration process.
Phase 3: Choice of a DBMS

- Costs to consider
 - Software acquisition cost
 - Maintenance cost
 - Hardware acquisition cost
 - Database creation and conversion cost
 - Personnel cost
 - Training cost
 - Operating cost

- Consider DBMS portability among different types of hardware
Transaction Design

- Design characteristics of known database transactions in a DBMS

Types of Transactions
- Retrieval Transactions
 - Used to retrieve data
- Update Transactions
 - Update data
- Mixed Transactions
 - Combination of update and retrieval

Techniques for Specifying Transactions
- Input/output
- Functional Behavior
Choice of DBMS

- Many factors to consider
 - Technical Factors
 - Type of DBMS: Relational, object-relational, object etc.
 - Storage Structures
 - Architectural options
 - Economic Factors
 - Acquisition, maintenance, training and operating costs
 - Database creation and conversion cost
 - Organizational Factors
 - Organizational philosophy
 - Relational or Object Oriented
 - Vendor Preference
 - Familiarity of staff with the system
 - Availability of vendor services
Phase 4: Data Model Mapping (Logical Database Design)

- Create a conceptual schema and external schemas
 - In data model of selected DBMS

- Stages
 - System-independent mapping
 - Tailoring schemas to a specific DBMS
Logical Database Design

- Transform the Schema from high-level data model into the data model of the selected DBMS.
- Design of external schemas for specific applications
- Two stages
 1. System-independent mapping
 - DBMS independent mapping
 2. Tailoring the schemas to a specific DBMS
 - Adjusting the schemas obtained in step 1 to conform to the specific implementation features of the data model used in the selected DBMS
- Result
 - DDL statements in the language of the chosen DBMS
Phase 5: Physical Database Design

- Choose specific file storage structures and access paths for the database files
 - Achieve good performance
- Criteria used to guide choice of physical database design options:
 - Response time
 - Space utilization
 - Transaction throughput
Physical Database Design

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.

- Design Criteria
 - Response Time
 - Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization
 - Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions

- Result
 - Initial determination of storage structures and access paths for database files
Phase 6: Database System Implementation and Tuning

- Typically responsibility of the DBA
 - Compose DDL
 - Load database
 - Convert data from earlier systems
- Database programs implemented by application programmers
- Most systems include monitoring utility to collect performance statistics
Database System Implementation and Tuning

- During this phase database and application programs are implemented, tested and deployed

- Database Tuning
 - System and Performance Monitoring
 - Data indexing
 - Reorganization

- Tuning is a continuous process
Database Design Tools

- **Common Features**
 - Allow the designer to draw conceptual schema diagram in some tool-specific notation
 - Allow model mapping
 - Allow some level of design normalization

- **Problems**
 - Most tools do nothing more than representing relationships among tables
 - Most tools lack built-in methodology support
 - Most tools have poor design verification system
Characteristics of a Good Design Tool

- Easy-to-use interface
 - Easy to use
 - Customizable

- Analytical components
 - For difficult tasks
 - such as evaluating physical design alternatives or detecting conflicting constraints among views

- Heuristic components
 - Automating design process using heuristic rules
Characteristics of a Good Design Tool

- Trade-off analysis
 - Comparative analysis in case of multiple alternatives
 - At least at the conceptual design level
- Display of design results
 - Displaying results in simple and easy to understand form
- Design Verification
 - Verifying that the resulting design satisfies the initial requirements
Automated Database Design Tools

- Many CASE (computer-aided software engineering) tools for database design
- Combination of the following facilities
 - Diagramming
 - Model mapping
 - Design normalization
Automated Database Design Tools

- Characteristics that a good design tool should possess:
 - Easy-to-use interface
 - Analytical components
 - Heuristic components
 - Trade-off analysis
 - Display of design results
 - Design verification
Automated Database Design Tools

- Variety of products available
 - Some use expert system technology

<table>
<thead>
<tr>
<th>Company</th>
<th>Tool</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embarcadero Technologies</td>
<td>ER/Studio, DBArtisan</td>
<td>Database modeling in ER and IDEF1x, Database administration and space and security management</td>
</tr>
<tr>
<td>Oracle</td>
<td>Developer 2000 and Designer 2000</td>
<td>Database modeling, application development</td>
</tr>
<tr>
<td>Persistence Inc.</td>
<td>PowerTier</td>
<td>Mapping from O-O to relational model</td>
</tr>
<tr>
<td>Platinum Technology</td>
<td>Platinum ModelMart, ERwin, BPwin, AllFusion Component Modeler</td>
<td>Data, process, and business component modeling</td>
</tr>
<tr>
<td>Popkin Software</td>
<td>Telelogic System Architect</td>
<td>Data modeling, object modeling, process modeling, structured analysis/design</td>
</tr>
<tr>
<td>Rational (IBM)</td>
<td>Rational Rose, XDE Developer Plus</td>
<td>Modeling in UML and application generation in C++ and Java</td>
</tr>
<tr>
<td>Resolution Ltd.</td>
<td>XCase</td>
<td>Conceptual modeling up to code maintenance</td>
</tr>
<tr>
<td>Sybase</td>
<td>Enterprise Application Suite</td>
<td>Data modeling, business logic modeling</td>
</tr>
<tr>
<td>Visio</td>
<td>Visio Enterprise</td>
<td>Data modeling, design and reengineering, Visual Basic and Visual C++</td>
</tr>
</tbody>
</table>
Summary

- Six phases of the design process
 - Commonly include conceptual design, logical design (data model mapping), physical design
- UML diagrams
 - Aid specification of database models and design
- Rational Rose and the Rose Data Modeler
 - Provide support for the conceptual design and logical design phases of database design