1. Find an efficient data structure for representing a subset S of the integers from 1 to n. Operations we wish to perform on the set are:
 - **INSERT**(i): insert the integer i to the set S. If i is already in the set, this instruction must be ignored.
 - **DELETE**: delete an arbitrary member from the set.
 - **MEMBER**(i): check whether i is a member of the set.

 Your data structure should enable each one of the above operations in constant time (irrespective of the cardinality of S).

2. Input is a sequence X of n keys with many duplications such that the number of distinct keys is $d(< n)$. Present an $O(n \log d)$-time sorting algorithm for this input. (For example, if $X = 5, 6, 1, 18, 6, 4, 4, 1, 5, 17$, the number of distinct keys in X is six.)

3. Solve the following recurrence relations:

 (a) \[
 T(n) = \begin{cases}
 1 & \text{if } n \leq 3 \\
 16T(n/3) + n^2 & \text{if } n > 3
 \end{cases}
 \]

 (b) \[
 T(n) = \begin{cases}
 1 & \text{if } n \leq 4 \\
 T(\sqrt{n}) + \log n & \text{if } n > 4
 \end{cases}
 \]

4. Given are two sets A and B with m and n elements, respectively, from a linear order. These sets are not necessarily sorted. Also assume that $m \leq n$. Show how to compute $A \cup B$ and $A \cap B$ in $O(n \log m)$ time.

5. X_1, X_2, \ldots, X_ℓ are sorted sequences such that $\sum_{i=1}^\ell |X_i| = n$. Show how to merge these ℓ sequences in $O(n \log \ell)$ time.