1. There are \sqrt{n} copies of an element in the array c. Every other element of c occurs exactly once. If the algorithm RepeatedElement is used to identify the repeated element of c, will the run time still be $\tilde{O}(\log n)$? If so, why? If not, what is the new run time?

2. Let A be a Monte Carlo algorithm that solves a decision problem π in time T. The output of A is correct with probability c, c being a constant greater than $1/2$. Show how you can modify A so that its answer is correct with high probability. The modified version can take $O(T \log n)$ time.

3. Input are two $n \times n$ matrices A and B. The problem is to check if $A = B$. It is known that if $A \neq B$, then these two matrices will differ in at least n elements. Present a Monte Carlo algorithm for this problem that runs in $O(n \log n)$ time.

4. [Problem 7.2 from MR95.] Two rooted trees T_1 and T_2 are said to be isomorphic if there exists a one-to-one mapping f from the vertices of T_1 to those of T_2 satisfying the following condition: for each internal vertex v of T_1 with the children v_1, \ldots, v_k, the vertex $f(v)$ has as children exactly the vertices $f(v_1), f(v_2), \ldots, f(v_k)$. Observe that no ordering is assumed on the children of any internal vertex. Devise an efficient randomized algorithm for testing the isomorphism of rooted trees and analyze the performance.

5. [Problem 7.10 from MR95]. Given a randomized algorithm for testing the existence of a perfect matching in a graph G, describe how you would actually construct such a matching. What is the run time of your algorithm if you use the testing algorithm described in class?

6. [Problem 7.13 from MR95]. Consider the two-dimensional version of the pattern matching problem. The text is an $n \times n$ Boolean matrix X and the pattern is an $m \times m$ Boolean matrix Y. A pattern match occurs if Y appears as a (contiguous) sub-matrix of X. To apply the randomized algorithm described in class, we can convert Y into an m^2-bit vector using the row-major format. The possible occurrences of Y in X are the m^2-bit vectors $X(j)$ obtained by taking all $(n - m + 1)^2$ sub-matrices of X in a row-major form. It is clear that the algorithm discussed in class can be used in this case. Analyze the error probability and run time in this case.