1. What is the run time of the following algorithm?

Algorithm Sum();
Result := 0;
for i := 1 to n do
 for j := 1 to i do
 for k := 1 to j do
 Result++;
 Output Result;

2. Show that: (a) $14n^3 \log n + 5n^2 = \Theta(n^3 \log n)$; (b) $\log(n!) = \Theta(n \log n)$; (c) $(\sqrt{n})^{\sqrt{n}} = o\left(2^{n^{0.6}}\right)$.

3. Prove or disprove:

 a) If $f(n) = O(g(n))$ then $2^{f(n)} = O(2^{g(n)})$.

 b) $\max\{f(n), g(n)\} = \Theta(f(n) + g(n))$.

 c) For any real constants a and b, $(n + a)^b = \Theta(n^b)$.

4. Input are an array $a[1 : n]$ of arbitrary real numbers and another real number u. The problem is to check if the array has two elements x and y such that $x + y = u$. Present an algorithm to solve this problem. What is the run time of your algorithm?

5. Input is an array $a[1 : n]$ of arbitrary real numbers. It is given that the array has two elements such that each of these elements is repeated $\frac{n}{4}$ times. The other elements are unique. (In other words the array has $\frac{n}{2} + 2$ distinct elements). Present a Las Vegas algorithm to identify the two repeated elements. The run time of your algorithm should be $\tilde{O}(\log n)$. Prove the run time of your algorithm.