1. Start from the first header node in the adjacency list of G and start counting the edges until you reach the count $2(|V| - 1)$. If the graph has any more edges than these then it is not a tree. If the graph has exactly $2(|V| - 1)$ edges, do the following: Perform a DFS in G and identify the connected components of G. If G contains only one connected component, then it is a tree else it is not a tree. Time Complexity = Initial edge counting time + Time complexity of DFS in G. DFS takes time $O(|V| + |E|) = O(|V|)$. Initial edge counting also takes $O(|V|)$ time.

2. It was shown in class that the maximum of n elements can be found in $O(1)$ time using n^2 common CRCW PRAM processors.

Consider the case when $\epsilon = \frac{1}{2}$. Divide the elements into groups fo size \sqrt{n}. Assign the first \sqrt{n} elements to the first n processors and the second \sqrt{n} elements to the next n processors and so on. The maximum element in each group can be found in $O(1)$ time. At this stage, we have \sqrt{n} elements and $n\sqrt{n}$ processors. Hence, the maximum of these elements can be found in $O(1)$ time. Total time = $O(1)$.

Next, consider the case when $\epsilon = \frac{1}{3}$. Here, divide the elements into groups of size $n^{1/3}$. Assign the first $n^{1/3}$ elements to the first $n^{2/3}$ processors and the second $n^{1/3}$ elements to the next $n^{2/3}$ processors and so on. The maximum element of each group can be found in $O(1)$ time and using $n^{4/3}$ processors the maximum of these maximum elements can be found in $O(1)$ time.

For the general case, partition the input into groups with n^ϵ elements in each group. Find the maximum of each group assigning $n^{2\epsilon}$ processors to each group. This takes $O(1)$ time. Now the problem reduces to finding the maximum of $n^{1-\epsilon}$ elements. Again, partition the elements with n^ϵ elements in each group and find the maximum of each group. There will be only $n^{1-2\epsilon}$ elements left. Proceed in a similar fashion until the number of remaining elements is $\leq \sqrt{n}$. The maximum of these can be found in $O(1)$ time. Clearly, the run time of this algorithm is $O(1/\epsilon)$. This will be a constant if ϵ is a constant.

3. Let A and B be the two given $n \times n$ matrices. Let C be the product. Clearly, $C[i, j] = \sum_{k=1}^{n} A[i, k] * B[k, j]$, for $1 \leq i, j \leq n$. We can assign n processors to calculate each entry in the product matrix C. Consider the computation of $C[i, j]$ for some specific values i
and j. Let the n associated processors be $1, 2, \ldots, n$. In parallel processor k computes $A[i, k] \times B[k, j] = c_k$, for $k = 1, 2, \ldots, n$. This takes one step. Followed by this, all the n processors compute the prefix sums value of the sequence c_1, c_2, \ldots, c_n. This takes $O(\log n)$ time. Let the prefix sums be c'_1, c'_2, \ldots, c'_n. Note that $C[i, j] = c'_n$.

The run time of the above algorithm is $O(\log n)$ and the processor bound is n^3. We can reduce the processor bound to $\frac{n^3}{\log n}$.

4. We know that π_1 polynomially reduces to π_2. Let x be an instance of π_1 with $|x| = n$. We can convert this into an instance x' of π_2 in $O(n^c)$ time (for some constant c). Note that c could be any constant (10, for instance) and we can only say that $|x'| = O(n^c)$ and in fact $|x'|$ could be $\Omega(n^c)$. If $|x'|$ is $\Omega(n^c)$, the run time needed for solving x' will be $O(2^{\sqrt{\Omega(n^c)}})$ which can be asymptotically greater than $2^{\sqrt{n}}$. Thus the given statement is not correct.

5. Use the following algorithm, Size(Graph G) -

\[
\text{for } i := |V| \text{ to } 0 \text{ do} \\
\quad \text{if } CLQ(i) = \text{yes then} \\
\quad\quad \text{output } i \\
\quad\quad \text{quit} \\
\end{align*}

Note that we increase the runtime of the CLQ algorithm, by a factor of $|V|$, yet maintaining it polynomial.