1. It was shown in class that the maximum of \(n \) elements can be found in \(O(1) \) time using \(n^2 \) common CRCW PRAM processors.

Consider the case when \(\epsilon = \frac{1}{2} \). Divide the elements into groups of size \(\sqrt{n} \). Assign the first \(\sqrt{n} \) elements to the first \(n \) processors and the second \(\sqrt{n} \) elements to the next \(n \) processors and so on. The maximum element in each group can be found in \(O(1) \) time. At this stage, we have \(\sqrt{n} \) elements and \(n\sqrt{n} \) processors. Hence, the maximum of these elements can be found in \(O(1) \) time. Total time = \(O(1) \).

Next, consider the case when \(\epsilon = \frac{1}{3} \). Here, divide the elements into groups of size \(n^{1/3} \). Assign the first \(n^{1/3} \) elements to the first \(n^{2/3} \) processors and the second \(n^{1/3} \) elements to the next \(n^{2/3} \) processors and so on. The maximum element of each group can be found in \(O(1) \) time and using \(n^{4/3} \) processors the maximum of these maximum elements can be found in \(O(1) \) time.

For the general case, partition the input into groups with \(n^\epsilon \) elements in each group. Find the maximum of each group assigning \(n^{2\epsilon} \) processors to each group. This takes \(O(1) \) time. Now the problem reduces to finding the maximum of \(n^{1-\epsilon} \) elements. Again, partition the elements with \(n^\epsilon \) elements in each group and find the maximum of each group. There will be only \(n^{1-2\epsilon} \) elements left. Proceed in a similar fashion until the number of remaining elements is \(\leq \sqrt{n} \). The maximum of these can be found in \(O(1) \) time. Clearly, the run time of this algorithm is \(O(1/\epsilon) \). This will be a constant if \(\epsilon \) is a constant.

2. Let \(A \) and \(B \) be the two given \(n \times n \) matrices. Let \(C \) be the product. Clearly, \(C[i, j] = \sum_{k=1}^{n} A[i, k] \times B[k, j], \) for \(1 \leq i, j \leq n \). We can assign \(n \) processors to calculate each entry in the product matrix \(C \). Consider the computation of \(C[i, j] \) for some specific values \(i \) and \(j \). Let the \(n \) associated processors be 1, 2, \ldots, \(n \). In parallel processor \(k \) computes \(A[i, k] \times B[k, j] = c_k \), for \(k = 1, 2, \ldots, n \). This takes one step. Followed by this, all the \(n \) processors compute the prefix sums value of the sequence \(c_1, c_2, \ldots, c_n \). This takes \(O(\log n) \) time. Let the prefix sums be \(c'_1, c'_2, \ldots, c'_n \). Note that \(C[i, j] = c'_n \).

The run time of the above algorithm is \(O(\log n) \) and the processor bound is \(n^3 \). We can reduce the processor bound to \(\frac{n^3}{\log n} \).
3. We know that π_1 polynomially reduces to π_2. Let x be an instance of π_1 with $|x| = n$. We can convert this into an instance x' of π_2 in $O(n^c)$ time (for some constant c). Note that c could be any constant (10, for instance) and we can only say that $|x'| = O(n^c)$ and in fact $|x'|$ could be $\Omega(n^c)$. If $|x'|$ is $\Omega(n^c)$, the run time needed for solving x' will be $O(2^{\sqrt{\Omega(n^c)}})$ which can be asymptotically greater than $2^{\sqrt{n}}$. Thus the given statement is not correct.

4. Use the following algorithm, $\text{Size}(\text{Graph } G)$ -

\[
\text{for } i := |V| \text{ to } 0 \text{ do }
\]
\[
\text{if } \text{CLQ}(i) = \text{yes} \text{ then }
\]
\[
\text{output } i \\
\text{quit}
\]
\[
\text{end}
\]

Note that we increase the runtime of the CLQ algorithm, by a factor of $|V|$, yet maintaining it polynomial.