1. We can see that the smallest element appears $2n - 1$ times in C. Similarly, the second smallest element appears $2n - 3$ times in C and the ith smallest element appears $2n - 2i + 1$ times in C. Now the median of C is the jth smallest element such that $\sum_{i=1}^{j} 2n - 2i + 1 = \frac{n^2}{2}$. The value of j can be obtained by solving the above equation, i.e., $j^2 - 2nj + \frac{n^2}{2} = 0$. Now, the median of C can be obtained by finding the jth smallest element in S. Complexity = $O(n)$.

2. Sort the sets A and B using the radix sort algorithm. These sorts can be done in $O(n)$ time. Now compute $A \cap B$ in $O(n)$ time. (This can be done by merging A and B). If $A \cap B = \emptyset$ then the sets are disjoint. Total time taken is $O(n) + O(n) = O(n)$.

3. Let $(p_1, p_2) = (2, 1), (w_1, w_2) = (x, 1), m = 1, x > 1$. Then

$$\frac{F^*(I)}{F(I)} = \frac{1}{2^\frac{1}{x}} = \frac{x}{2} \rightarrow \infty \text{ when } x \rightarrow \infty$$

4. One possible minimum spanning tree has the following edges: $(1, 3), (1, 4), (2, 3)$, and $(3, 5)$. The total weight is 14. (You are supposed to give the detailed steps in either Prim’s or Kruskal’s algorithm).

5. At the beginning of the algorithm $dist[s] = 0; \text{dist}[1] = 2; \text{dist}[2] = 15; \text{dist}[3] = \text{dist}[4] = \text{dist}[5] = \infty$.

In stage 1, node 1 has the minimum $dist$ value and hence is inserted into the set S. Nodes 3 and 4 are neighbors of 1 and hence we have to check if the $dist$ values of these nodes have to be modified. Since $dist[3] > dist[1] + W(1, 3)$, we change $dist[3]$ to 8. Likewise we set $dist[4] = 5$.

In stage 2, node 4 has the minimum $dist$ value and hence is inserted into S. Nodes 2, 5, and 3 are neighbors of 4. The new $dist$ values of these nodes become: $dist[2] = 10; dist[3] = 6; dist[5] = 10$.

In stage 3, node 3 has the minimum $dist$ value and it becomes a part of S. All the neighbors of 3 are already in S and the $dist$ values of the nodes 2 and 5 do not change.

In stage 4, we have two nodes both having the same dist value. We could pick one arbitrarily and insert it into S. Let 2 be this node. The $dist$ value of 5 does not change.

In stage 5, the node 5 also enters S. Algorithm terminates then.

Thus the shortest paths from s to the nodes 1, 2, 3, 4, and 5 are 2, 10, 6, 5, and 10, respectively.

6. As discussed in class, if $f_i(y)$ is the optimal profit for $\text{KNAP}(1, j, y)$, the recurrence relation for $f_i(y)$ is given by: $f_i(y) = \max\{f_{i-1}(y), f_{i-1}(y - w_i) + p_i\}$. Also, $f_0(y) = 0$ for all non-negative values of y and $f_i(y) = -\infty$ when y is negative. From these relations we compute $f_0(y), f_1(y), f_2(y), f_3(y), f_4(y)$ for all $0 \leq y \leq 5$. These values are shown in the following table.
Function | $y = 0$ | $y = 1$ | $y = 2$ | $y = 3$ | $y = 4$ | $y = 5$
---|---|---|---|---|---|
f_0 | 0 | 0 | 0 | 0 | 0 | 0
f_1 | 0 | 10 | 10 | 10 | 10 | 10
f_2 | 0 | 10 | 15 | 25 | 25 | 25
f_3 | 0 | 10 | 15 | 25 | 35 | 40
f_4 | 0 | 10 | 15 | 25 | 35 | 40

For example, $f_3(5) = \max\{f_2(5), f_2(5 - 3) + 25\} = \max\{25, 15 + 25\} = 40$. Also, $f_4(4) = \max\{f_3(4), f_3(4 - 2) + 12\} = \max\{35, 15 + 12\} = 35$; and so on. Thus the optimal profit is 40.

7. Let A be the adjacency matrix of the graph (whose diagonal elements are zeros). It can be shown that $A^k(i, j) = 1$ iff there is a path from node i to node j of length exactly equal to k, for any $0 \leq k \leq (n - 1)$. If there is a path at all from node i to node j in G, the shortest such path will be of length $\leq (n - 1)$.

Hence, $A^* = I + A + A^2 + \ldots + A^{n-1} = (I + A)^{n-1}$. Here, scalar addition corresponds to boolean or and scalar multiplication corresponds to boolean and.

Now, $(I + A)^{n-1}$ can be computed by repeated squaring, i.e., $(I + A)^2, (I + A)^4, (I + A)^8$ etc. Complexity = Complexity of adding matrices I and $A +$ Complexity of computing $(I + A)^{n-1} = O(M(n) \log n)$.