1. a) For every element \(x \) in the skip list,

\[
\Pr[level(x) \geq h] = \sum_{i \geq h} p^i \leq \frac{p^h}{1 - p}
\]

\[\Rightarrow \Pr[\exists x \mid level(x) > h] \leq \frac{np^h}{1 - p}\]

We want this \(\leq n^{-\alpha} \):

\[
\frac{np^h}{1 - p} = n^{-\alpha} \Rightarrow -(\alpha + 1) \log_p n = h + \log_p (1 - p)
\]

\[\Rightarrow h = (\alpha + 1) \log_{1/p} n + \log_{1/p} (1 - p)
\]

\[\Rightarrow h = O(log_{1/p} n).\]

b) The expected number of children for each node is \(1/p \) which means the expected runtime of each operation is \((1 - n^{-\alpha})O(\frac{1}{p} \log_{1/p} n) + n^{-\alpha}O(n) = O(\frac{1}{p} \log_{1/p} n) = O(\log_{1/p} n).\)

c) In practice, if \(p \) is small then the height of the skip-list is small, but the number of children to be scanned at each level increases. Conversely, if \(p \) is large, the height increases, but the time at each level is reduced. The minimum value for the function \(1/p \log_{1/p} n \) is obtained for \(p = 1/2 \) which means our initial sampling probability was optimal.

2. Let \(H \) be some random hash family, and let \(h \in H \). Let \(S \) be a sample of \(M \) of size \(|S| = s = n \).

\[
\Pr[h \text{ collides for two values of } S] = \frac{1}{n}
\]

\[
\Pr[h \text{ is perfect for } S] = \left(1 - \frac{1}{n}\right)^{n-1}
\]

\[
\Pr[\forall h \in H, h \text{ is NOT perfect for } S] = \left(1 - \left(1 - \frac{1}{n}\right)^{n-1}\right)^{|H|}
\]

\[
\Pr[\exists S \in M \text{ s.t. there is no perfect } h \in H \text{ for } S] \leq \binom{m}{s} \left(1 - \left(1 - \frac{1}{n}\right)^{n-1}\right)^{|H|}
\]

We want to see for what value of \(|H| \) this probability is less than \(1 \):
\[\binom{m}{s} \left(1 - \left(1 - \frac{1}{n} \right)^{n-1} \right)^{|H|} < 1 \]
\[\Rightarrow \log \binom{m}{s} + |H| \log \left(1 - \left(1 - \frac{1}{n} \right)^{n-1} \right) < 0 \]
\[\Rightarrow |H| > \frac{- \log \binom{m}{s}}{\log \left(1 - \left(1 - \frac{1}{n} \right)^{n-1} \right)} \]

In the last inequality the sign is > because \(\log \left(1 - \left(1 - \frac{1}{n} \right)^{n-1} \right) < 0 \).

We know the following facts:
\[\binom{m}{s} < 2^m \Rightarrow \log \binom{m}{s} < m \]

and

\[\left(1 - \frac{1}{n} \right)^n \approx \frac{1}{e} \]
\[\Rightarrow \left(1 - \frac{1}{n} \right)^{n-1} \approx \frac{1}{e(1 - \frac{1}{n})} \approx \frac{1}{e} \]
\[\Rightarrow \log \left(1 - \left(1 - \frac{1}{n} \right)^{n-1} \right) \approx \log \left(1 - \frac{1}{e} \right) \approx -0.199 \]
\[\Rightarrow |H| > mc \text{ for some constant } c \]

To sum up, for \(|H| = O(m) \), the probability that there is an \(S \) for which none of the functions in \(H \) is perfect, is \(< 1 \). So, the probability there is no such \(S \) (meaning \(|H| \) is perfect for \(M \)) is \(> 0 \). Using the probabilistic method, we conclude there exists a perfect hash family, of size polynomial in \(m \).

3. The size of \(H \) is \(p - 1 \). For fixed \(x \) and \(y \), \(h_a(x) = h_b(y) \Leftrightarrow a(x - y) \equiv in \mod p \) where \(i \in \{1, 2, \ldots, \left\lfloor \frac{p}{n} \right\rfloor \} \). So \(h_n \) produces collision on \(x \) and \(y \) only if \(a \) is of the form \(a = in(x - y)^{-1} \mod p \). There are \(\left\lfloor \frac{p}{n} \right\rfloor \) such values, so \(\delta(x, y, H) = \left\lfloor \frac{p}{n} \right\rfloor \leq \frac{p}{n} = \frac{|H| + 1}{n} \leq \frac{2|H|}{n} \). □

4. Let \(X = k_1, k_2, \ldots, k_n \). Assume without loss of generality that the keys are distinct. Note that the right neighbor of any input key \(k_i \) is nothing but the minimum among all the input keys that are greater than \(k_i \). Key \(k_i \) is assigned a group \(G_i \) of \(n \) processors, \(1 \leq i \leq n \). The processors associated with \(k_i \) use an array \(A_i[1 : n] \). This array is initialized with all \(\infty \)'s. Processor \(j \) of group \(G_i \) writes \(k_j \) in \(A_i[j] \) if \(k_j > k_i \). After this write step that takes one parallel step, processors in \(G_i \) find the minimum of \(A_i[1], A_i[2], \ldots, A_i[n] \) in \(O(1) \) time. This minimum is the right neighbor of \(k_i \).
5. We will show that we can stably sort \(n \) integers in the range \([1, \sqrt{n}]\) in \(O(\sqrt{n})\) time using \(\sqrt{n} \) CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort \(n \) integers in the range \([1, n^c]\) (for any constant \(c \)) in \(O(\sqrt{n})\) time using \(\sqrt{n} \) processors.

Let \(X = k_1, k_1, \ldots, k_n \) be the input sequence. Assign \(\sqrt{n} \) keys per processor. In particular, the first processor gets the keys \(k_1, k_2, \ldots, k_{\sqrt{n}} \); the second processor gets the keys \(k_{\sqrt{n} + 1}, k_{\sqrt{n} + 2}, \ldots, k_{2\sqrt{n}} \); and so on.

(a) Each processor sorts its keys using bucket sorting. This takes \(O(\sqrt{n}) \) time. Let \(N_{i,j} \) be the number of keys of value \(j \) that processor \(i \) has, for \(1 \leq i, j \leq \sqrt{n} \).

(b) All the \(\sqrt{n} \) processors perform a prefix sums computation on \(N_{1,1}, N_{2,1}, \ldots, N_{\sqrt{n},1}, N_{1,2}, N_{2,2}, \ldots, N_{\sqrt{n},2}, \ldots, N_{1,\sqrt{n}}, N_{2,\sqrt{n}}, \ldots, N_{\sqrt{n},\sqrt{n}} \).

(c) Each processor now uses these prefix sums values to output its keys in the sorted order.

Since each of the above three steps takes \(O(\sqrt{n}) \) time, the run time of the algorithm is \(O(\sqrt{n}) \).

6. Assume that \(A \) and \(B \) are in common memory in successive cells. In particular, assume that \(A \) is in \(M[1 : n] \) and \(B \) is in \(M[n + 1 : m + n] \).

(a) Sort \(B \), i.e., sort \(M[n + 1 : n + m] \). This can be done in \(\widetilde{O}(\log m) \) time using \(m \) arbitrary CREW PRAM processors.

(b) Assign one processor per element of \(A \). Processor \(i \) performs a binary search in \(B[n + 1 : n + m] \) to check if \(M[i] \) is in \(B \), for \(1 \leq i \leq n \). This binary search takes \(O(\log m) \) time.

(c) In this step, we’ll use an array \(Q[1 : 2m] \). Each element of \(A \) that is also in \(B \) will be placed in a unique cell of \(Q \). Each element of \(A \) is assigned one processor. If an element of \(A \) is in \(A \cap B \), the corresponding processor will try to place the element in \(Q \). If an element of \(A \) is not in \(A \cap B \), the corresponding processor goes to sleep. If a processor \(\pi \) has an element that has to be placed in \(Q \), \(\pi \) proceeds in rounds. It takes as many rounds as needed to successfully place its key.

In a round, \(\pi \) picks a random cell in \(Q \). If this cell is occupied, it waits for the next round; If this cell is empty, it tries to write its key in the cell; Processor \(\pi \) reads from this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to the next round.

Probability that \(\pi \) succeeds in any round is \(\geq 1/2 \). Thus the number of rounds needed to place \(\pi \)'s key successfully in \(Q \) is \(\widetilde{O}(\log m) \), for any processor \(\pi \).

(d) Use a prefix computation to compress the array \(Q[1 : 2m] \) (and get rid of the empty cells). This can be done in \(O(\log m) \) time using \(\frac{2m}{\log m} \leq n \) processors.

The compressed array \(Q \) is \(A \cap B \).

We could do steps (c) and (d) in a different way as follows. We use an array \(Q[1 : m] \) initialized to all zeros. Each element of \(A \) is assigned a processor. Processor \(i \) goes to sleep if \(k_i \) is not in \(A \cap B \), \(1 \leq i \leq n \). Otherwise, processor \(i \) writes a 1 in \(Q[j] \) if \(M[i] = M[n + j] \). After this parallel write step, we assign one processor per element of \(B \). These processors empty
the cells of B that are not in $A \cap B$. A prefix sums computation is done on Q in $O(\log m)$ time using $\frac{m}{\log m}$ processors. These prefix sums are used to write the elements of $A \cap B$ in successive cells in common memory.