Note: You are supposed to give proofs to the time and processor bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (16 points) $T(V, E)$ is a given binary tree with n nodes. For every node v in the tree we are supposed to compute the number of nodes in the subtree rooted at v. Present an $O(n)$ time algorithm for this problem.
2. (17 points) Input are a sorted sequence \(X = k_1, k_2, \ldots, k_n \) of distinct elements and another element \(x \). The problem is to check if \(x \in X \). Present an algorithm for this problem that uses \(\sqrt{n} \) CREW PRAM processors and runs in time \(O(1) \).
3. (17 points) Input is an undirected graph $G(V, E)$ (with $|V| = n$) in the form of an adjacency matrix. The problem is to check if G has a triangle as a subgraph. Present an $O(1)$ time algorithm for this problem that uses up to n^3 common CRCW PRAM processors.
4. (17 points) Input is a (not necessarily sorted) sequence X of n arbitrary real numbers. Present a Monte Carlo algorithm to output an element of X whose rank in X is $\geq \frac{1}{2}n$. Your algorithm should run in $O(\log \log n)$ time using up to $\log \frac{n}{\log \log n}$ CREW PRAM processors. Show that the output of your algorithm will be correct with high probability. (Recall that the rank of an element x in a sequence X is defined to be $|\{q \in X : q < x\}| + 1$.)
5. (17 points) π_1 and π_2 are two decision problems. It is known that $\pi_1 \preceq \pi_2$. Any instance of π_1 can be translated into an instance of π_2 in n^3 time such that the instance of π_1 has the answer yes iff the corresponding instance of π_2 has the answer yes. Here n is the size of the instance of π_1. If π_2 can be solved in time $m^{\log m}$ on any instance of size m, can π_1 be solved in $O(n^{\log n})$ time using the above reduction on any instance of size n?
6. (16 points) The subset sum decision problem takes as input a set S of n elements and an element M. The problem is to check if there exists a subset S' of S whose elements sum to M. For example, if $S = \{5, 11, 7, 13, 4, 8, 14\}$ and if $M = 28$, the answer is yes since the subset $\{5, 11, 4\}$ sums to 28. In the optimization version of the subset sum problem we are supposed to identify a subset S' that sums to M. Assume that SUBSUM is a polynomial time algorithm for solving the subset sum decision problem. Show how you'll use SUBSUM to design a polynomial time algorithm to find a subset whose sum is M.