CSE 3500 Algorithms and Complexity

Fall 2014 Exam III – Solutions

1. Let \(A = \{a_1, a_2, \ldots, a_n\} \) and \(B = \{b_1, b_2, \ldots, b_n\} \). Group the processors into \(G_1, G_2, \ldots, G_n \) where each group has \(n \) processors. Group \(G_i \) is assigned the key \(a_i \) (for \(1 \leq i \leq n \)). \(G_i \) checks if \(a_i \) is repeated in \(B \) by comparing \(a_i \) with every element of \(B \) and taking a Boolean OR. At the end we again use the Boolean OR algorithm to check if any element of \(A \) is repeated in \(B \). The total run time is \(O(1) \).

2. Partition the processors so that there are \(n \) groups \(G_i, 1 \leq i \leq n \), with \(n^2 \) processors in each group. Assign \(k_i \) to \(G_i \). Each \(G_i \) maintains an array \(B \) of size \(n \), one cell for each of the keys in the input sequence. Each cell in \(B \) is initialized to \(\infty \). \(n \) of the processors in \(G_i \) compare \(k_i \) with every input key and set \(B[j] \) to \(k_j \) if \(k_j \) is greater than \(k_i \). Now, find the minimum of all the keys in \(B \). This gives the right neighbor of the key \(k_i \). Since the minimum of \(n \) elements can be found in \(O(1) \) time using \(n^2 \) common CRCW PRAM processors, the run time of the algorithm is \(O(1) \).

3. Let the input sequence be \(X = b_1, b_2, \ldots, b_n \). Form the sequence \(Y = (1, b_1), (2, b_2), \ldots, (n, b_n) \). This sequence can be formed in \(O(\log n) \) time given \(n \) CREW PRAM processors.

 Now define an operator \(\oplus \) as follows: \((i, 1) \oplus (j, b) = (i, 1)\) for any \(i, j \), and \(b \). Also, \((i, 0) \oplus (j, b) = (j, b)\) for any \(i, j \), and \(b \). Clearly, this operator is associative and can be computed in \(O(1) \) time.

 Compute \((1, b_1) \oplus (2, b_2) \oplus \cdots \oplus (n, b_n)\) using a prefix computation. If the result is \((i, o)\) for some \(i \), then it means that there is no \(1 \) in the sequence \(X \). If the result is \((i, 1)\) for some \(i \), then the position of the leftmost \(1 \) in \(X \) is \(i \).

 Clearly, the algorithm takes \(O(\log n) \) using \(\frac{n}{\log n} \) CREW PRAM processors.

4. Assign \(q = \frac{m}{\log m} \) CREW PRAM processors for every position \(i \) in the text (for \(1 \leq i \leq (n - m + 1) \)). Let these \(q \) processors be \(P_1^i, P_2^i, \ldots, P_q^i \).

 for \(i = 1 \) to \((n - m + 1) \) in parallel do
 for \(j = 1 \) to \(q \) in parallel do
 Processor \(P_j^i \) computes \(b_k^j := \text{"Is } t_{i+k-1} \neq p_k?'\),
 for \(k = (j-1) \log m + 1, (j-1) \log m + 2, \ldots, j \log m \);
 for \(i = 1 \) to \((n - m + 1) \) in parallel do
 Processors \(P_1^i, P_2^i, \ldots, P_q^i \) collectively compute \(A[i] \) as \(b_1^i + b_2^i + \cdots + b_m^i \)
 using a prefix computation;

 Clearly, the number of processors needed is \(\frac{(n-m+1)m}{\log m} \leq \frac{nm}{\log m} \). The run time of each step is \(O(\log m) \).

5. If \(n \) is the size of the instance of \(\pi_1 \), we can translate this instance into an instance of \(\pi_2 \) in \(n^3 \) time. This implies that the size \(m \) of the corresponding instance of \(\pi_2 \) cannot be more than \(n^3 \). Since the algorithm for \(\pi_2 \) takes \(O(m^{10}) \) time, this run time is no more than \(O((n^3)^{10}) = O(n^{30}) \). Thus the instance of \(\pi_1 \) can be solved in time \(n^3 + O(n^{30}) = O(n^{30}) \).
6. Let $G(V, E)$ be any instance of HCP. We construct an instance of TSP as follows: $G'(V, E')$; n (where $n = |V|$) such that if $(a, b) \in E$, then this edge will have a weight of 1 in G'. If $(a, b) \notin E$, then we add the edge (a, b) to G' with a weight of 2. Clearly, this construction takes $O(|V|^2)$ time.

We have to show that G has a Hamiltonian cycle if and only if G' has a tour of weight $\leq n$.

If G has a Hamiltonian cycle, then clearly, this cycle is a tour of weight n in G'. Also, if G' has a tour of weight n, then it means that each edge in this path has a weight of 1 which in turn means that each of these edges will also be an edge in G. As a result, this path in G' corresponds to a Hamiltonian cycle in G.

Put together, we infer that HCP polynomially reduces to TSP.