1. Here we make use of the fact that we can sort n integers in the range $[1, n^c]$ in $O(n)$ time for any constant c. Please note that if we sort each of the sets separately, then we may not be able to sort all the sets in $O(n)$ time. Each set may take $\Theta(n)$ time to sort. We could sort all the sets together as follows. Let the elements of the set S_i be $k_1^i, k_2^i, \ldots, k_{n_i}^i$, where $n_i = |S_i|$, for $1 \leq i \leq \ell$. We replace the elements of the set S_i with pairs $(i, k_1^i), (i, k_2^i), \ldots, (i, k_{n_i}^i)$, for $1 \leq i \leq \ell$. Note that we have n such pairs across all the ℓ sets together and also each pair can be thought of as an integer in the range $[1, n^{11}]$. We sort these n pairs in lexicographic order using the integer sorting algorithm in $O(n)$ time. The sorted list gives us the result that we want.

2. Here we use the Selection Algorithm done in class: $\text{Select}(a[1:n], i)$ returns the i-th smallest element in the array a.

 $$A := \text{Select}(X[1:n], \frac{n}{3})$$
 $$B := \text{Select}(X[1:n], \frac{2n}{3})$$

 Identify all the elements of X that are in the range $[A, B]$. Add these elements together and output.

 The total run time is $O(n)$.

3. Matrices A and B are partitioned into k submatrices of size $n \times n$ each. In particular, A is partitioned into submatrices A_1, \ldots, A_k and B is partitioned into B_1, \ldots, B_k, respectively. Then $AB =$

 $$\begin{pmatrix}
 A_1 \\
 A_2 \\
 \vdots \\
 A_k
 \end{pmatrix}
 \begin{pmatrix}
 B_1 & B_2 & \cdots & B_k
 \end{pmatrix}
 =
 \begin{pmatrix}
 A_1B_1 & A_1B_2 & \cdots & A_1B_k \\
 A_2B_1 & A_2B_2 & \cdots & A_2B_k \\
 \vdots & \vdots & \ddots & \vdots \\
 AkB_1 & AkB_2 & \cdots & AkB_k
 \end{pmatrix}
 $$

 AB can be found by computing A_iB_j, for $1 \leq i, j \leq k$. Each of A_iB_j can be found by using Strassen’s algorithm in $O(n^{\log_7 2})$ time. Thus the total time taken is $O(k^2n^{\log_7 2})$.

4. Let $k = \lfloor \frac{m}{n} \rfloor$. Assume w.l.o.g. that the profits of the objects are distinct. Optimal knapsack contains k objects whose profits are the largest. Find the object that has the kth largest profit. Let its profit be P. This object is found using a linear time selection algorithm. Scan through the input objects and fill the knapsack with only those whose profits are $\geq P$. This algorithm takes $O(n)$ time.

 Proof of optimality: let $X = (x_1, x_2, \ldots, x_n)$ be an optimal solution and $Y = (y_1, y_2, \ldots, y_n)$ be a solution found by the algorithm above, both solutions are sorted in the descending order of p_i’s. Assume that $X \neq Y$, i.e., there exists an index i s.t. $x_i \neq y_i, x_j = y_j, 1 \leq j \leq i - 1$. Since $|X| = |Y| = k, i \leq k$ and due to the greedy nature of our algorithm $y_i = 1$, implying that $x_i = 0$. Also there exists a $t > k$ s.t. $x_t = 1$. Since $p_i > p_t$, replacing the tth object in the optimal solution by the ith object would improve the optimal one, a contradiction.

5. One possible minimum spanning tree has the following edges: $(3, 4), (4, 5), (2, 4), (4, 7), (1, 6)$ and $(1, 3)$. The total weight is 21.

In stage 1, node 1 has the minimum dist value and hence is inserted into the set S. Nodes 2, 3 and 4 are neighbors of 1 and hence we have to check if the dist values of these nodes have to be modified. Since $dist[2] > dist[1] + W(1, 2)$, we change $dist[2]$ to 9. Likewise we set $dist[3] = 5$ and $dist[4] = 10$.

In stage 2, node 3 has the minimum dist value and hence is inserted into S. Nodes 2 and 5 are neighbors of 3. The new dist values of these nodes become: $dist[2] = 6; dist[5] = 8$.

In stage 3, node 2 has the minimum dist value and it becomes a part of S. Nodes 4 and 5 are neighbors of 2. The new dist value of 4 becomes 8 and the dist value of 5 does not change.

In stage 4, we have two nodes both having the same dist value. We could pick one arbitrarily and insert it into S. Let 4 be this node. The dist value of 5 does not change.

In stage 5, the node 5 also enters S. Algorithm terminates then.

Thus the shortest paths from s to the nodes 1, 2, 3, 4, and 5 have weights 4, 6, 5, 8, and 8, respectively.