Note: You are supposed to give proofs to the time bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (16 points) Let X be a sequence of n distinct arbitrary real numbers. X need not be in sorted order. If x is an element of X, the rank of x in X is defined to be $|\{q \in X : q \leq x\}|$. Present an algorithm that takes as input X, a, b (where a and b are integers in the range $[1, n]$) and outputs all the elements of X whose ranks are in the interval $[a, b]$. Your algorithm should run in $O(n)$ time.
2. (18 points) Input are \(n \) keys where each key is an integer in the range \([1, N]\) where \(N \) is much larger than \(n \). Present an algorithm that sorts the keys in time \(O\left(n \frac{\log N}{\log n}\right)\).
3. (16 points) Input is an $n \times n$ matrix A. Present an $O(n^{\log_2 7} \log m)$ time algorithm to compute A^m where m is an integer. If it helps you can assume that m is an integral power of 2.
4. (18 points) Present a greedy approach for the solution of the traveling salesperson problem. Is your algorithm optimal? If so, prove it. If not, specify an upper bound on $\frac{YC}{OC}$ where YC is the total cost of the tour found by your algorithm and OC is the cost of the optimal tour. What is the run time of your algorithm?
5. (16 points) Find a minimum spanning tree for the following graph $G(V, E)$ either using Prim’s algorithm or using Kruskal’s algorithm: $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$. The edge weights are: $W(1, 2) = 2$; $W(1, 3) = 1$; $W(1, 4) = 1$; $W(2, 3) = 8$; $W(3, 4) = 1$; $W(2, 6) = 5$; $W(6, 3) = 4$; $W(6, 7) = 3$; $W(3, 7) = 2$; $W(7, 8) = 6$; $W(3, 8) = 3$; $W(3, 5) = 5$; $W(5, 8) = 8$; $W(5, 4) = 6$.
6. (16 points) Use Dijkstra’s algorithm to solve the single source shortest path problem on the directed graph $G(V,E)$: $V = \{s, 2, 3, 4, 5, 6, 7, 8\}$. Edge weights are: $W(s, 2) = 5$; $W(s, 4) = 10$; $W(2, 5) = 6$; $W(2, 6) = 2$; $W(3, 5) = 14$; $W(3, 8) = 5$; $W(4, 3) = 3$; $W(4, 8) = 2$; $W(5, 7) = 2$; $W(6, 3) = 6$; $W(6, 4) = 2$; $W(6, 5) = 4$; $W(6, 7) = 3$; $W(8, 5) = 7$.