1. (a) \(n^n = 2^{n \log n} \cdot 2^{2(\log n)^{1.5}} = 2^{n \log \sqrt{n}} \). Since \(n \log n = o(n \sqrt{\log n}) \), it follows that \(n^n = O(2^{n \log \sqrt{n}}) \).

(b) This statement need not always be true. As an example, if \(f(n) = n^4 + n^2 \) and \(g(n) = n^4 + n \), \(f(n) - g(n) = n^2 - n \neq \Theta(n^4) \).

2. Consider the following Monte Carlo algorithm:

0. \(i = 0 \);
1. Pick an element \(x \in A \) at random. \(i = i + 1 \);
2. Use binary search to look for \(x \) in \(B \);
3. If \(x \in B \) then output Type II and stop;
4. If \(x \notin B \) and \(i < \alpha n^{1/3} \log n \) then goto 1; else output Type I and stop.

If \(A \) and \(B \) are of Type I then the algorithm above always outputs the correct answer.
If \(A \) and \(B \) are of Type II then the probability of failure during steps 1-2-3 is \(1 - \frac{n^{2/3}}{n} \).
Probability of failure after executing steps 1-2-3 \(n^{1/3} \alpha \log n \) times is \((1 - \frac{n^{2/3}}{n})^{\alpha n^{1/3} \log n} \leq n^{-\alpha} \).

3. Keep two 2-3 trees \(N \) and \(S \). In \(N \) store all the records with the name as the key for each record and in \(S \) store all the records with the social security number as the key for each record. To process \(\text{Find.Name(SSN)} \), we search for a record whose key is \(SSN \) in the tree \(S \). The name in this record will be output. The run time is \(O(\log n) \). We process \(\text{Find.SSN(Name)} \) in a similar manner.

4. (a) We can use the master theorem here. \(a = 64, b = 4, f(n) = n^3 \). Also, \(n^{\log_b a} = n^3 \).
Case 2 applies. Thus, \(T(n) = \Theta(n^3 \log n) \).

(b) \[T(n) = T(n^{1/3}) + \log n = T(n^{1/9}) + \log n^{1/3} + \log n = \ldots = \sum_{k=0}^{i-1} \frac{1}{3^k} \log n \]
where \(i = \frac{\log \log n}{\log \frac{3}{2}} \). Therefore \(T(n) = \log n (\sum_{k=0}^{i-1} \frac{1}{3^k}) = \log n^{2/3} \left(\frac{1}{3} - \frac{1}{\log n} \right) = \Theta(\log n) \).

5. Let the array be \(a[1 : n] \). Invoke \(\text{FindTransition}(a, 1, n) \).

\(\text{FindTransition}(a, l, r) \)
(1) $m = \lceil (l + r)/2 \rceil$.
(2) if $a[m - 1] < a[m]$ and $a[m] > a[m + 1]$ return m;
(3) if $a[m - 1] < a[m] < a[m + 1]$ return $\text{FindTransition}(a, m + 1, r)$;
(4) if $a[m - 1] > a[m] > a[m + 1]$ return $\text{FindTransition}(a, l, m - 1)$;

If $T(n)$ is the run time of the algorithm on any input of size n, then we have: $T(n) \leq T(n/2) + O(1)$ which solves to: $T(n) = O(\log n)$.

6. Here is an algorithm:

Step 1. Sort R to get R';
Step 2. Merge S_1, S_2, \ldots, S_n together to get S';
Step 3. Sort all the elements of T_1, T_2, \ldots, T_n together to get T';
Step 4. Finally, merge R', S', and T' to get one sorted sequence.

We will show that each of the steps 1 to 3 can be done in $O(n\sqrt{\log n})$ time. Since each of the sequences R', S', and T' has < n elements, they can be merged in $O(n)$ time.

Step 1. Since R has < n elements and there are only $2\sqrt{\log n}$ distinct elements in it, using a result from Homework 2, R can be sorted in $O(n\sqrt{\log n})$ time.

Step 2. A result from Homework 2 states that we can merge ℓ sorted sequences in $O(n \log \ell)$ time if there are a total of n elements in the ℓ sequences together. If we apply this fact for S_1, S_2, \ldots, S_n, it follows that they can be merged in $O(n\sqrt{\log n})$ time.

Step 3. Note that the total number of elements in the sequences T_1, T_2, \ldots, T_n, together, is $O(n/ \log n)$. Thus we can put all of these elements together and sort them in $O(n)$ time (e.g., using merge sort).