1. (18 points) We are given two sets A and B with n elements each in the form of arrays. We are also given that A is in sorted order and B may not be in sorted order. In addition, $|A \cap B| = \sqrt{n}$. Present an $\tilde{O}(\sqrt{n} \log^2 n)$ time Las Vegas algorithm to output an element that is common to A and B.
2. (16 points) A department has to keep records of its employees such that the following operations can be performed on the records:

- **Find_Name(SSN):** Return the name of the person whose social security number is SSN; and
- **Find_SSN(Name):** Return the social security number of the person whose name is Name.

Present a data structure for keeping the records that will take $O(\log n)$ time to perform each of the above operations, n being the number of persons in the department. You can use $O(n)$ space.
3. (17 points) Present a data structure that can support the following operations:

 - **INSERT**\((x) \) – Insert the element \(x \) into the data structure if \(x \) is not already there.
 - **FIND_MIN()** – Return the value of the smallest element in the data structure.
 - **DEL_MIN()** – Delete and return the minimum value from the data structure.
 - **INC_ALL\((y) \)** – Increase the value of each element in the data structure by \(y \).

Each operation should take \(O(\log n) \) time and you can use \(O(n) \) space.
4. (16 points) Two different divide-and-conquer algorithms A and B have been designed for solving the problem π. A partitions π into 5 subproblems each of size $\frac{n}{3}$. Here n is the input size for π. It takes a total of $\Theta(n^2)$ time for the partition and combine steps. B partitions π into 10 subproblems each of size $\frac{n}{4}$. It takes a total of $\Theta(n^{1.8})$ time for the partition and combine steps. Which algorithm is preferable? Why?
5. (16 points) Input are an array $a[\]$ of n elements and an element x. We have to check if there are three elements in $a[\]$ whose sum is x. Assume that the array elements are distinct. Present an $O(n^2 \log n)$ time algorithm for this problem.
6. (17 points) Input are k sets S_1, S_2, \ldots, S_k such that $\sum_{i=1}^{k} |S_i| = n$. The elements of these sets are integers in the range $[1, n^{10}]$. The problem is to sort these k sets. Present an algorithm to sort all of these sets in a total of $O(n)$ time.