1. (a) TRUE. Since \(f(n) = O(g(n)) \) there exist constants \(c_1 \) and \(n_1 \) such that \(f(n) \leq c_1g(n) \) for all \(n \geq n_1 \). Similarly, there exist constants \(c_2 \) and \(n_2 \) such that \(g(n) \leq c_2h(n) \) for all \(n \geq n_2 \). As a result, it follows that \(f(n) \leq c_1c_2h(n) \) for all \(n \geq n_0 \) (where \(n_0 = \max\{n_1, n_2\} \)). Thus we conclude that \(f(n) = O(h(n)) \).

(b) FALSE. If \(n^3 = O\left(n^{2\sqrt{\log n}}\right) \), then it will imply that \(n = O\left(2^{\sqrt{\log n}}\right) \), i.e., \(2^{\log n} = O\left(2^{\sqrt{\log n}}\right) \), which is not true since \(\sqrt{\log n} = o(\log n) \).

2. Consider the following algorithm:

\[
\text{repeat}
\]
\[
\quad \text{Pick a random } j \in [1, n];
\]
\[
\quad \text{if } A[j] < 2 \text{ then output "Type I" and quit;}
\]
\[
\quad \text{if } A[j] > 4 \text{ then output: "Type II" and quit;}
\]
\[
\text{forever}
\]

\textbf{Analysis:} Consider the case of \(A \) being of type I. The probability that \(A[j] = 1 \) on a randomly picked \(j \) is \(\frac{1}{3} \). Thus the probability of quitting in any execution of the repeat loop is \(\frac{1}{3} \). Therefore, the probability of failure in any execution of the repeat loop is \(\frac{2}{3} \). As a result, the probability of failure in the first \(k \) iterations of the repeat loop is \(\left(\frac{2}{3}\right)^k \). We want this probability to be no more than \(n^{-\alpha} \). This happens when \(k \geq \log_{3/2} n \). This implies that the run time of this algorithm is \(\tilde{O}(\log n) \), if the array is of type I. A similar analysis holds when the array is of type II.

3. Keep two 2-3 trees \(N \) and \(H \). In \(N \) store all the records with the name as the key for each record and in \(H \) store all the records with the HuskyOne ID as the key for each record. To process \textbf{Find Name}(HID), we search for a record whose key is \(HID \) in the tree \(H \). The name in this record will be output. The run time is \(O(\log n) \). We process \textbf{Find HID}(Name) in a similar manner.

4. We keep four variables: \textit{average}, \textit{min}, \textit{max}, and \(n \). We use \(n \) to store the number of elements, \textit{min} to store the minimum, \textit{max} to store the maximum, and \textit{average} to store the average of all the elements that have been inserted into the data structure thus far. We process the four operations as follows.
1) **Insert**(x): $n := n + 1$; if $\min > x$ then $\min := x$; if $\max < x$ then $\max := x$;
average := $\frac{\text{average} (n-1) + x}{n}$;

2) **FindMin()**: return \min;

3) **FindMax()**: return \max; and

4) **FindMean()**: return average.

Clearly, each operation takes $O(1)$ time.

5. (a) Here $a = 27$, $b = 3$, and $f(n) = n^4$. $n^{\log_{27}3} = n^3$ and hence the regularity condition holds. As a result, case 3 of Master theorem holds. Therefore, $T(n) = \Theta(n^4)$.

(b) We can use repeated substitutions here. $T(n) = T(n-1) + \log_e n = T(n-2) + \log_e(n-1) + \log_e n = T(n-3) + \log_e(n-2) + \log_e(n-1) + \log_e n$. Continuing this, it follows that $T(n) = 1 + \sum_{i=3}^{n} i \log_e i$. We can approximate this summation with the integral $\int_{3}^{n} i \log_e i \, di = (i \log_e i - i)\big|_{3}^{n} = \Theta(n \log n)$. Therefore, $T(n) = \Theta(n \log n)$.

6. Let $X_i = \{k_{i1}^i, k_{i2}^i, \ldots, k_{n/\log n}^i\}$, for $1 \leq i \leq \log n$. We replace each k_j^i with a pair (k_j^i, i), for $1 \leq i \leq \log n$ and $1 \leq j \leq \frac{n}{\log n}$ and form a sequence Y of these new keys. Specifically,

$$Y = (k_1^1, 1), (k_2^1, 1), \ldots, (k_{n/\log n}^1, 1),$$

$$ (k_1^2, 2), (k_2^2, 2), \ldots, (k_{n/\log n}^2, 2),$$

$$ \ldots,$$

$$ (k_1^{\log n}, \log n), (k_2^{\log n}, \log n), \ldots, (k_{n/\log n}^{\log n}, \log n).$$

We now sort Y. In fact we only have to sort this sequence with respect to the first entries of the pairs. Let Y' be the sorted sequence. We scan through this sorted sequence comparing one element with the next in the sequence. If we find two successive pairs (k, i) and (k, j), for some k, then we output i and j. The total run time is $O(n \log n)$.

2