1. Let M be the adjacency matrix and let $|V| = n$. Each of the n^2 processors is assigned one entry of M. These n^2 processors then compute the Boolean AND of the n^2 bits of M in $O(1)$ time.

2. Make use of an array $b[1 : n]$. The n processors fill $b[1 : n]$ as follows: $b[i] = i$ if $a[i] = n$ and $b[i] = 0$ otherwise, for $1 \leq i \leq n$. This can be done in 1 time unit. The n processors then collectively find and output the maximum of $b[1], b[2], \ldots, b[n]$.

3. Let the input be $X = k_1, k_2, \ldots, k_n$.

Fact 1. If there are n elements, we can solve the prefix minima problem in $O(1)$ time using n^3 processors.

Here is an algorithm: Assign n^2 processors to each prefix of X. The n^2 processors associated with any prefix can compute the minimum of the prefix in $O(1)$ time.

Fact 2. Given n processors, we can solve the prefix minima problem in $O(\log \log n)$ time.

Here is an algorithm: Partition X into $n^{1/3}$ parts where there are $n^{2/3}$ elements in each part. Assign $n^{2/3}$ processors to each part and solve the prefix minima problem for each part recursively and in parallel. If $T(n)$ is the time needed to solve the prefix minima problem on n elements using n processors, then this step takes $T(n^{2/3})$ time. Let $q_1, q_2, \ldots, q_{n^{1/3}}$ be the group minima (i.e., q_i is the minimum of all the elements in part i, for $1 \leq i \leq n^{1/3}$). Solve the prefix minima problem on the sequence $q_1, q_2, \ldots, q_{n^{1/3}}$ using all the n processors. This can be done in $O(1)$ time (using Fact 1). Let $r_1, r_2, \ldots, r_{n^{1/3}}$ be the result. Now we update the prefix values in each part using this sequence. In particular, if w is any element in part i it will be updated as the minimum of w and r_{i-1} (for $2 \leq i \leq n^{1/3}$). This takes $O(1)$ time.

As a result we infer that $T(n) = T(n^{2/3}) + O(1)$ that solves to $O(\log \log n)$.

Now we are ready to prove the main result. Assume that we have $P = \frac{n}{\log\log n}$ processors. We partition the input into $\frac{n}{\log\log n}$ groups where each group has $\log\log n$ elements. Assigning one processor per group we solve the prefix minima problem for each group in parallel. This takes $O(\log\log n)$ time. Let q_1, q_2, \ldots, q_P be the group minima. Using all the $\frac{n}{\log\log n}$ processors compute the prefix minima of q_1, q_2, \ldots, q_P. Let the result be r_1, r_2, \ldots, r_P. We can obtain this sequence in $O(\log\log n)$ time (as per Fact 2). Now update the elements in each group. In particular, if w is any element in part i it will be updated as the minimum of w and r_{i-1} (for $2 \leq i \leq P$). This takes $O(\log\log n)$ time.

Thus the entire algorithm takes $O(\log\log n)$ time.

4. We first sort B in $\tilde{O}(\log m)$ time using m CRCW PRAM processors. Let the sorted form of B be k_1, k_2, \ldots, k_m. We then let m of the processors fill an array $C[1 : m]$ all with zeros. Followed by this, we assign one processor per key of A. Each of these
processors, in parallel, performs a binary search in \(B \) to check if its key is in \(B \). As a result of this parallel binary search, these processors modify \(C[1 : m] \) such that \(C[i] = 1 \) if \(k_i \) is in both \(A \) and \(B \) (and \(C[i] = 0 \), otherwise). Finally \(m \) of the processors perform a prefix computation on \(C[1 : m] \) to write all the elements of \(A \cap B \) in successive cells of the common memory.

Sorting of \(B \) can be done in \(\tilde{O}(\log m) \) time using \(m \) processors. \(C[1 : m] \) can be initialized to zeros in \(O(1) \) time. Parallel binary search takes \(O(\log m) \) time using \(n \) processors. The final prefix computation takes \(O(\log m) \) time using \(m \) processors.

5. We make use of radix sort where we sort one bit at a time starting from the LSBs of the keys. Sorting of \(n \) bits can be done using a prefix computation in \(O(\log n) \) time using \(\frac{n}{\log n} \) CREW PRAM processors (as was shown in class). Thus the entire algorithm takes \(O(\log n) \) time.

6. Let \(X = k_1, k_2, \ldots, k_n \) be the given input sequence. We partition the input into two equal parts \(X_1 \) and \(X_2 \) where \(X_1 = k_1, k_2, \ldots, k_{n/2} \) and \(X_2 = k_{n/2+1}, k_{n/2+2}, \ldots, k_n \). Assign \(n/2 \) processors to recursively sort \(X_1 \); Assign the other \(n/2 \) processors to recursively sort \(X_2 \). Once \(X_1 \) and \(X_2 \) are sorted, merge them in \(O(\log \log n) \) time using \(n \) processors. Let \(T(n) \) be the time taken to sort \(n \) elements using \(n \) processors. Then, \(T(n) = T(n/2) + O(\log \log n) \) which solves to \(O(\log n \log \log n) \).