1. One possible greedy algorithm will sort the programs in nondecreasing order of their tape requirements and pick the \(r \) smallest programs whose total length is \(\leq l \) and the total length of the \((r+1) \) smallest programs is \(> l \). The run time of this algorithm is \(O(n \log n) \).

Let \(R = \{R_1, \ldots, R_r\} \) be the output of greedy algorithm, and \(S = \{S_1, \ldots, S_s\} \) be that of an optimal strategy in nondecreasing order of program size. Let \(i \) be the least index in which these two differ. Clearly, \(R_i < S_i \). Also note that \(R_i \not\in S \). Thus we can insert \(R_i \) into \(S \) before \(S_i \) and delete \(S_s \), if there is a need. The new solution has at least the same number of programs as before. Proceeding in this fashion, we can make the first \(r \) programs of \(S \) the same as the corresponding \(r \) programs of \(R \). There can not be space left in the tape for any more programs. If there were, the greedy algorithm would have added at least one more program. Thus \(s \leq r \).

If each \(a_i > l \), the utilization ratio is 0.

2. (a). \(f_i(y) = \max\{f_{i-1}(y), \max_{k,y \geq kw_i}\{f_{i-1}(y - kw_i) + kp_i\}\} \).

(b). If we fix \(i \) and \(y \), \(f_i(y) \) can be computed in \(O(m) \) time. But \(i \in [1..n] \), \(y \in [1..m] \). Thus the running time is \(O(m^2n) \). Note that we can bring the run time down to \(O(mn) \).

(c). For \(i \in [1..n] \), calculate \(p_i/w_i \). As a result, find the object \(k \) with the maximum profit density. Fill the knapsack with this object. Then \(x_k = m/w_k \), and the total profit is \(\frac{m}{w_k} p_k \).

3. Let \(\text{minCount}(x) \) return the minimum number of coins for the amount \(x \).

\[
\text{minCount}(x) = \min\{\text{minCount}(x - a_1) + 1, \text{minCount}(x - a_2) + 1, \ldots, \text{minCount}(x - a_n) + 1\}
\]

By computing \(\text{minCount}(x) \) for each possible value of \(x, 1 \leq x \leq C \) and storing them in a table, we can see that the value of \(\text{minCount} \) for each value can be derived from the \(\text{minCount} \) values of \(n \) other entries. Complexity = \(O(Cn) \).

4. If a graph contains a square as a subgraph then there exist at least two nodes which have two common neighbors.

Step 1: Arrange the neighbors of each node in a sorted order. This can be done by constructing tuples \((i,j)\) for each neighbor \(j \) of a node \(i \) and sorting all the constructed tuples of all the nodes using the radix sort. This takes \(O(|V| + |E|) \) time.

Step 2: Find if there are any two nodes that have two common neighbors.

Let \(L_i \) represent the sorted list of neighbors of node \(i \), \(1 \leq i \leq n \).

- for \(i := 1 \) to \(|V|\) do
 - for \(j := 1 \) to \(|V|\) do
 - Merge \(L_i \) and \(L_j \) and check whether \(i \) and \(j \) have two common neighbors.

Run time of step 1 is \(O(|V| + |E|) \).

Let \(d_i \) represent the length of \(L_i \). Note that \(d_i \) is the degree of \(i \).

Run time of step 2 is \(\sum_{1 \leq i \leq |V|, 1 \leq j \leq |V|} (d_i + d_j) = O(|V||E|) \).

Thus the total run time of the algorithm is \(O(|V||E|) \).

5. Evaluate \(f(a) \) and \(g(a) \) using Horner’s rule and multiply \(f(a) \) and \(g(a) \). Complexity = \(O(n) \).

6. Sort \(A \) and \(B \). Let \(a_i \) be the number of elements \(x \in A \) such that \(x = i \). Let \(b_i \) be the number of elements \(y \in B \) such that \(y = i \). Let \(P_1(x) = a_0x^{5n} + \ldots + a_0, P_2(x) = b_0x^{5n} + \ldots + b_0 \). Let \(P_3(x) = P_1(x)P_2(x) = c_0x^{10n} + \ldots + c_0 \). Then \(c_i = |C_i| \). Sorting \(A \) and \(B \) takes \(O(n) \) time, computing \(a_i, b_i \) for \(i = 0, \ldots, 5n \) takes \(O(n) \) time, and computing \(c_i \) for \(i = 0, \ldots, 10n \) takes \(O(n \log n) \) time.