1. Preliminaries. We say \(f(n) = O(g(n)) \) if \(f(n) \leq cg(n) \) for all \(n \geq n_0 \) for some constants \(c \) and \(n_0 \). We say \(f(n) = \Omega(g(n)) \) if and only if \(g(n) = O(f(n)) \). Also, \(f(n) = \Theta(g(n)) \) if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).

A partial list of functions in increasing order is: \(O(1), (\log n)^{\epsilon}, \log n, (\log n)^{1+\mu}, n^\epsilon, n^{1+\mu}, 2^n, 2^{n^{1+\mu}} \) where \(0 < \epsilon < 1 \) and \(\mu > 0 \) are constants.

Stirling’s approximation: \(n! \approx (n/e)^n \sqrt{2\pi n} \).
\[
\sum_{i=1}^{n} i = n(n + 1)/2. \sum_{i=1}^{n} i^2 = n(n + 1)(2n + 1)/6. \sum_{i=1}^{n} i^3 = n^2(n + 1)^2/4. \]

2. Master Theorem. Consider the recurrence relation: \(T(n) = aT(n/b) + f(n) \), where \(a \geq 1 \) and \(b > 1 \) are constants. **Case 1:** If \(f(n) = O(n^{\log_b a - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \). **Case 2:** If \(n^{\log_b a} = \Theta(f(n)) \), then \(T(n) = \Theta(n^{\log_b a}) \). **Case 3:** If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \), then, \(T(n) = \Theta(f(n)) \).

3. Randomized Algorithms. A Monte Carlo algorithm runs for a prespecified amount of time and its output is correct with high probability. By high probability we mean a probability of \(1 - n^{-\alpha} \), for any constant \(\alpha \). A Las Vegas algorithm always outputs the correct answer and its run time is a random variable. We say the run time of a Las Vegas algorithm is \(\tilde{O}(f(n)) \) if the run time is \(\leq c\alpha f(n) \) for all \(n \geq n_0 \) with probability \(\geq (1 - n^{-\alpha}) \) for some constants \(c \) and \(n_0 \).

4. Dictionaries and Priority Queues: A dictionary supports the operations: SEARCH (for an arbitrary element), INSERT (an arbitrary element), and DELETE (an arbitrary element). A (max) priority queue supports: INSERT (an arbitrary element), SEARCH (for the maximum element), and DELETE (the maximum element).

5. Hashing with Chaining: Here we employ an array \(a[1 : m] \) of lists and a hash function \(h(.) \). Any element \(x \) will be inserted into the list \(a[h(x)] \).

INSERT, DELETE, and SEARCH operations take \(O(1 + \alpha) \) time on the average, where \(\alpha = n/m \). In the worst case each operation takes \(\Omega(n) \) time.

6. Binary Search Trees: A binary search tree (BST) is a binary tree where each node has a key. Key at each node is greater than any key in its left subtree and smaller than any key in its right subtree. A BST can be used to support a dictionary as well as a priority queue. Each operation of interest (SEARCH, INSERT, DELETE) will take \(O(h) \) time to process, where \(h \) is the height of the tree.

The expected height of a BST on \(n \) nodes is \(O(\log n) \). In the worst case the height can be \(\Omega(n) \).

7. Heaps and Heapsort: A (max) heap is a complete binary tree where a key is stored at each node. The key at any node will be greater than the keys of its children.

A (max) heap supports the following operations: SEARCH (for the maximum), INSERT (an arbitrary element), and DELETE (the maximum). Each operation can be completed in \(O(\log n) \) time, \(n \) being the number of elements in the heap. A heap can be used to sort elements. Heapsort on \(n \) elements takes \(O(n \log n) \) time.

Given a sequence of numbers we can form a heap out of these elements using the Heapify algorithm. If called on a tree of height \(h \), Heapify takes \(O(h) \) time to complete. A heap out of \(n \) elements can be formed in \(O(n) \) time.

8. A 2-3 Tree: can be used to support a dictionary as well as a priority queue. Each operation of interest will take \(O(\log n) \) time in the worst case.

9. Mergesort sorts \(n \) arbitrary keys in \(O(n \log n) \) time. Quicksort sorts \(n \) keys in an expected run time of \(O(n \log n) \). Its worst case run time is \(O(n^2) \).