1. **Preliminaries.** We say \(f(n) = O(g(n)) \) if \(f(n) \leq cg(n) \) for all \(n \geq n_0 \) for some constants \(c \) and \(n_0 \). We say \(f(n) = \Omega(g(n)) \) if and only if \(g(n) = O(f(n)) \). Also, \(f(n) = \Theta(g(n)) \) if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).

A partial list of functions in increasing order is: \(O(1), (\log n)^{\epsilon}, \log n, (\log n)^{1+\mu}, n^\epsilon, n, n^{1+\mu}, 2^n, 2^\alpha n \) where \(0 < \epsilon < 1 \) and \(\mu > 0 \) are constants.

Stirling’s approximation: \(n! \approx (n/e)^n \sqrt{2\pi n} \).

\[
\sum_{i=1}^{n} i = n(n+1)/2, \quad \sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6, \quad \sum_{i=1}^{n} i^3 = n^2(n+1)^2/4.
\]

2. **Master theorem.** Consider the recurrence relation: \(T(n) = aT(n/b) + f(n) \), where \(a \geq 1 \) and \(b > 1 \) are constants.

Case 1: If \(f(n) = O(n^{\log_b a - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \).

Case 2: If \(n^{\log_b a} = \Theta(f(n)) \), then \(T(n) = \Theta(f(n) \log n) \).

Case 3: If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \), then \(T(n) = \Theta(f(n)) \).

3. **Randomized algorithms.** A Monte Carlo algorithm runs for a prespecified amount of time and its output is correct with high probability. By high probability we mean a probability of \(\geq 0.97 \), for any constant \(\alpha \). A Las Vegas algorithm always outputs the correct answer and its run time is a random variable. We say the run time of a Las Vegas algorithm is \(O(f(n)) \) if the run time is \(\leq cf(n) \) for all \(n \geq n_0 \) with probability \(\geq (1 - n^{-\alpha}) \), for some constants \(c \) and \(n_0 \).

4. **Data Structures.** A dictionary supports three operations: INSERT, DELETE, and SEARCH. A (min) priority queue supports: INSERT, FindMin and DeleteMin. If one uses a 2-3 tree, each of these operations takes \(O(\log n) \) time, \(n \) being the number of elements in the data structure.

5. **Sorting.** Given a sequence of \(n \) numbers (or keys), the problem of sorting is to rearrange this sequence in either nondecreasing order or nonincreasing order. The mergesort algorithm has a worst case run time of \(O(n \log n) \). The run time of quicksort is \(O(n^2) \) in the worst case and \(O(n \log n) \) on the average.

A sorting problem is called general sorting if the only information known about the keys is that the keys are from a linear order. Any general sorting algorithm makes use of comparison as the basic operation. It can be shown that any general sorting algorithm needs \(\log(n!) = \Omega(n \log n) \) comparisons in the worst case.

We can sort \(n \) keys in \(O(n) \) time if the keys are integers in the range \([1, n^c]\) (for any constant \(c \)).

6. **Selection.** Given a sequence of \(n \) keys and an integer \(i(1 \leq i \leq n) \), the problem of selection is to identify the \(i \)-th smallest key from out of the \(n \) keys. Quickselect algorithm takes \(O(n^2) \) time in the worst case and \(O(n) \) time on the average. BFPRT algorithm takes \(O(n) \) time in the worst case.

7. **Matrix Multiplication.** Strassen’s algorithm takes \(O(n^{\log_2 7}) \) time.