1. **Preliminaries.** We say \(f(n) = O(g(n)) \) if \(f(n) \leq cg(n) \) for all \(n \geq n_0 \) for some constants \(c \) and \(n_0 \). We say \(f(n) = \Omega(g(n)) \) if and only if \(g(n) = O(f(n)) \). Also, \(f(n) = \Theta(g(n)) \) if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).

A partial list of functions in increasing order is: \(O(1) \), \((\log n)^c \), \(\log n \), \((\log n)^{1+\mu} \), \(n^c \), \(n \), \(n^{1+\mu} \), \(2^n \), \(2^{n^{1+\mu}} \) where \(0 < c < 1 \) and \(\mu > 0 \) are constants.

Stirling’s approximation: \(n! \approx \left(n/e\right)^n \sqrt{2\pi n} \).

\[\sum_{i=1}^{n} i = n(n+1)/2. \quad \sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6. \quad \sum_{i=1}^{n} i^3 = n^2(n+1)^2/4. \]

2. **Master theorem.** Consider the recurrence relation: \(T(n) = aT(n/b) + f(n) \), where \(a \geq 1 \) and \(b > 1 \) are constants. **Case 1:** If \(f(n) = O(n^{log_b a-\epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{log_b a}) \). **Case 2:** If \(n^{log_b a} = \Theta(f(n)) \), then \(T(n) = \Theta(f(n) \log n) \). **Case 3:** If \(f(n) = \Omega(n^{log_b a+\epsilon}) \) for some constant \(\epsilon > 0 \) and \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \), then \(T(n) = \Theta(f(n)) \).

3. **Randomized algorithms.** A Monte Carlo algorithm runs for a prespecified amount of time and its output is correct with high probability. By high probability we mean a probability of \(\geq (1 - n^{-\alpha}) \), for any constant \(\alpha \). A Las Vegas algorithm always outputs the correct answer and its run time is a random variable. We say the run time of a Las Vegas algorithm is \(O(f(n)) \) if the run time is \(\leq cf(n) \) for all \(n \geq n_0 \) with probability \(\geq (1 - n^{-\alpha}) \), for some constants \(c \) and \(n_0 \).

Chernoff bounds: If \(X \) has a binomial distribution \(B(n, p) \), then \(Pr[X \geq (1 + \epsilon)np] \leq \exp(-\epsilon^2 np/3) \) and \(Pr[X \leq (1 - \epsilon)np] \leq \exp(-\epsilon^2 np/2) \), for any \(0 < \epsilon < 1 \).

4. **Data Structures.** A dictionary supports three operations: INSERT, DELETE, and SEARCH. A (min) priority queue supports: INSERT, FindMin and DeleteMin. If one uses a 2-3 tree, each of these operations takes \(O(\log n) \) time, \(n \) being the number of elements in the data structure.

In the Union-Find paradigm we start with \(n \) sets: \(\{1\}, \{2\}, \ldots, \{n\} \). The goal is to perform a sequence of union and find operations. An arbitrary sequence of \(m \) union-find operations can be performed in time \(O(m \alpha(m)) \) where \(\alpha \) is the inverse Ackermann’s function.

5. **Sorting.** Given a sequence of \(n \) numbers (or keys), the problem of sorting is to rearrange this sequence in either nondecreasing order or nonincreasing order. The mergesort algorithm has a worst case run time of \(O(n \log n) \). The run time of quicksort is \(O(n^2) \) in the worst case and \(O(n \log n) \) on the average.

We proved a sampling lemma: If \(s \) keys are picked randomly from a sequence \(X \) of \(n \) keys and if the \(s \) keys are sorted and used to partition \(X \) into \(s + 1 \) parts, then the size of each part is \(\tilde{O} \left(\frac{n^2}{s} \log n \right) \). Frazer-McKellar’s randomized algorithm does sorting using \(n \log n + \tilde{O}(n \log \log n) \) comparisons.

A sorting problem is called general sorting if the only information known about the keys is that the keys are from a linear order. Any general sorting algorithm makes use of comparison as the basic operation. We have shown that any general sorting algorithm needs \(\log(n!) = \Omega(n \log n) \) comparisons in the worst case.

We can sort \(n \) keys in \(O(n) \) time if the keys are integers in the range \([1, n^c]\) (for any constant \(c \)).