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Abstract

With the widening gap between processor speeds
and disk access speeds, the I/O bottleneck has be-
come critical. Parallel Disk Systems (PDS) have
been introduced to alleviate this bottleneck. In this
paper we present deterministic and randomized se-
lection algorithms for parallel disk systems. The
algorithms to be presented, in addition to being
asymptotically optimal, have small underlying con-
stants in their time bounds and hence have the po-
tential of being practical.

1 Introduction

Given a sequence of n keys and an integer i,
1 ≤ i ≤ n, the problem of selection is to iden-
tify the ith smallest of the n keys. This important
comparison problem has been extensively studied.
Numerous asymptotically optimal sequential algo-
rithms have been discovered. Asymptotically op-
timal algorithms have been presented for varying
parallel models as well.
Floyd and Rivest’s sequential algorithm [9], in

addition to being asymptotically optimal, is sim-
pler than the optimal deterministic algorithm of
Blum et al. [7].
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Reischuk’s randomized algorithm for the paral-
lel comparison tree model takes O(1) time using
n processors and hence is clearly optimal. Meg-
gido’s algorithm finds the maximum in O(1) time
using n parallel comparison tree processors. Both
of these algorithms are based on the idea of [9]. A
constant time randomized algorithm for maximum
selection for the CRCW PRAM has been given by
Rajasekaran and Sen [18].

It is easy to obtain a randomized logarithmic
time algorithm for selection using n

log n CRCW
PRAM processors (see e.g., [10]). A determinis-
tic logarithmic time asymptotically optimal algo-
rithm is also known [11]. Cole’s algorithm for the
CRCW PRAM runs in O(log n log∗ n/ log log n)
time using an optimal number of processors.
Chaudhuri, Hagerup, and Raman’s algorithm [2]
runs in O(log n/ log log n) time on the CRCW
PRAM using n log log n/ log n CRCW PRAM pro-
cessors.

Optimal algorithms have also been designed for
models such as the mesh, the hypercube, meshes
with buses, etc. For a survey of parallel selection
algorithms, the reader is referred to [16].

We present two selection algorithms for the
PDS. The PDS have been proposed with the
widening gap between processor speeds and disk
access speeds in mind. The first algorithm is ran-
domized and the second algorithm is deterministic.
The number of parallel I/O read operations needed



for either is O
(

N
DB

)
, where N is the number of in-

put keys, D is the number of disks, and B is the
block size. Thus the algorithms are asymptotically
optimal. Due to the small underlying constants,
the algorithms have the potential of being practi-
cal as well.

Many problems such as sorting, graph problems,
etc. have been studied on the PDS. Any sorting
algorithm can clearly be used to perform selec-
tion. The known lower bound on the number of
passes through the data for sorting on the PDS
is Ω

(
log(N/B)
log(M/B)

)
, where N is the number of input

keys, M is the internal memory size, and B is the
block size. In practice one can assume that N is a
polynomial in M and M is a polynomial in B and
hence this lower bound simply means a constant
number of passes through the data.

The PDS model we use is the one suggested
by Vitter and Shriver in their pioneering paper
[20]. Several asymptotically optimal sorting al-
gorithms have been proposed for the PDS. All
these algorithms, though theoretically important,
have rather large constants in their time bounds.
Recently, Rajasekaran has proposed a sorting al-
gorithm called the (l,m)-merge sort (LMM) [15].
An implementation of this algorithm on the PDS

makes no more than
[

log(N/M)

log(min{(M/B),
√

M}) + 1
]2

passes through the data. It has been shown that
when D is large, LMM performs better than the
disk-striped merge sort (DSM) algorithm that is
used in practice.

An interesting question is if we can perform se-
lection on the PDS in time better than sorting
time. This paper answers this question in the affir-
mative. In Section 2 we introduce the PDS model.
In Sections 3 and 4 we present our randomized and
deterministic algorithms, respectively. Section 5
concludes the paper.

2 Parallel Disk Systems

Several models for parallel disks have been inves-
tigated in the literature. The model employed in
this paper is the one introduced in one of the pio-
neering papers of Vitter and Shriver [20]. In this
model there are D distinct and independent disk
drives. The disks can simultaneously transmit a
block of data. A block consists of B records. If
M is the internal memory size, then one usually
requires that M ≥ 2DB. For the algorithms pre-
sented in this paper, a choice of M = 3DB suf-
fices. Of this, DB amount of memory is used to
prefetch data in order to overlap computation and
data access. From hereon, we use M to denote
DB.

The problem of disk sorting was first studied
by Aggarwal and Vitter in their foundational pa-
per [5]. In the model they considered, each I/O
operation results in the transfer of D blocks each
block having B records. A more realistic model
was envisioned in [20]. Several asymptotically op-
timal algorithms have been given for sorting on
this model. Nodine and Vitter’s optimal algorithm
[13] involves solving certain matching problems.
Aggarwal and Plaxton’s optimal algorithm [4] is
based on the Sharesort algorithm of Cypher and
Plaxton. Vitter and Shriver gave an optimal ran-
domized algorithm for disk sorting [20]. All these
results are highly nontrivial and theoretically in-
teresting. However, the underlying constants in
their time bounds are high.

In practice the simple disk-striped mergesort
(DSM) is used [6], even though it is not asymptot-
ically optimal. DSM has the advantages of sim-
plicity and a small constant. Data accesses made
by DSM is such that at any I/O operation, the
same portions of the D disks are accessed. This
has the effect of having a single disk which can



transfer DB records in a single I/O operation.
An M

DB -way mergesort is employed by this algo-
rithm. To start with, initial runs are formed in
one pass through the data. At the end the disk
has N/M runs each of length M . Next, M

DB runs
are merged at a time. Blocks of any run are uni-
formly striped across the disks so that in future
they can be accessed in parallel utilizing the full
bandwidth. Each phase of merging involves one
pass through the data. There are log(N/M)

log(M/DB) phases
and hence the total number of passes made by
DSM is log(N/M)

log(M/DB) . In other words, the total num-
ber of I/O read operations performed by the algo-
rithm is N

DB

(
1 + log(N/M)

log(M/DB)

)
. The constant here

is just 1.

The known lower bound on the number of passes
for parallel disk sorting is Ω

(
log(N/M)
log(M/B)

)
. If one

assumes that N is a polynomial in M and that B
is small (which are readily satisfied in practice),
the lower bound simply yields Ω(1) passes. All
the abovementioned optimal algorithms make only
O(1) passes. So, the challenge in the design of
parallel disk sorting algorithms is in reducing this
constant. If M = 2DB, the number of passes
made by DSM is 1+ log(N/M), which indeed can
be very high.

Recently, several works have been done that deal
with the practical aspects. Pai, Schaffer, and Var-
man [14] analyzed the average case performance of
a simple merging algorithm, employing an approx-
imate model of average case inputs. Barve, Grove,
and Vitter [6] have presented a simple randomized
algorithm (SRM) and analyzed its performance.
The analysis involves the solution of certain occu-
pancy problems. The expected number ReadSRM

of I/O read operations made by their algorithm is
such that

ReadSRM ≤ N

DB
+

N

DB

log(N/M)

log kD

log D

k log log D
(1)

∗
(

1 +
log log log D

log log D
+

1 + log k

log log D
+ O(1)

)

The algorithm merges R = kD runs at a time,
for some integer k. When R = Ω(D logD), the
expected performance of their algorithm is opti-
mal. However, in this case, the internal memory
needed is Ω(BD logD). They have also compared
SRM with DSM through simulations and shown
that SRM performs better than DSM.

Recently, Rajasekaran [15] has presented an al-
gorithm (called (l,m)-merge sort (LMM)) which
is asymptotically optimal under the assumptions
that N is a polynomial in M and B is small.
The algorithm is as simple as DSM. LMM makes
less number of passes through the data than DSM
when D is large.

The selection algorithms to be presented are as
simple as the DSM. Data accesses are such that in
any I/O operation, the same portions of the disks
are accessed. Alive keys (i.e., keys that have not
yet been eliminated) in any stage are uniformly
striped across the disks.

3 A Randomized Selection Algo-

rithm

In this section we present a randomized selection
algorithm for the PDS. The number of I/O read
operations made by the algorithm is O

(
N

DB

)
with

high probability.

Almost all the selection algorithms proposed in
the literature, be they deterministic or random-
ized, sequential or parallel, are based on sampling.

For example, Floyd and Rivest’s randomized al-
gorithm [9] is based on random sampling. The
algorithm consists of the following steps. 1) Select
a random sample S of s elements from the input
set X; 2) Sort the sample S and find two elements



�1 and �2 from S such that the ith smallest ele-
ment of X will have a value in between �1 and �2

and also the number of keys from X that have a
value in between �1 and �2 is ’small’; 3) Eliminate
keys of X that do not have a value in the range
[�1, �2]; and 4) Perform an appropriate selection in
the set of remaining keys.
Sampling techniques have been repeatedly used

to develop selection algorithms for a variety of
parallel models of computing. Though these algo-
rithms employ sampling as a common theme, they
have model-dependent innovations and employ ad-
ditional techniques. Our randomized algorithm is
also based on the above theme.

A Sampling Lemma. Let Y be a sequence
of n numbers from a linear order and let S =
{k1, k2, . . . , ks} be a random sample from Y . Also
let k′1, k′2, . . . , k′s be the sorted order of this sample.
If ri is the rank of k′i in Y , the following lemma
provides a high probability confidence interval for
ri. (The rank of any element k in Y is one plus
the number of elements < k in Y .)

Lemma 3.1 For every α > 0, Prob.(
|ri − in

s | >
√
3α n√

s

√
log n

)
< n−α.

A proof of the above lemma can be found in [17].
We say a randomized algorithm uses Õ(g(n))

amount of any resource (like time, space, etc.) if
there exists a constant c such that the amount of
resource used is no more than cαg(n) with proba-
bility ≥ 1− n−α on any input of length n and for
any α (see e.g., [10]). Similar definitions apply to
õ(g(n)) and other such ‘asymptotic’ functions.
By high probability we mean a probability of ≥

1 − n−α for any fixed α ≥ 1 (n being the input
size of the problem at hand). Let B(n, p) denote a
binomial random variable with parameters n and
p.

One of the most frequently used facts in ana-
lyzing randomized algorithms is Chernoff bounds.
These bounds provide close approximations to the
probabilities in the tail ends of a binomial distri-
bution. Let X stand for the number of heads in
n independent flips of a coin, the probability of a
head in a single flip being p. X is also known to
have a binomial distribution B(n, p). The follow-
ing three facts (known as Chernoff bounds) will be
used in the paper (and were discovered by Cher-
noff [3] and Angluin & Valiant [1]):

Prob.[X ≥ m] ≤
(
np

m

)m

em−np,

Prob.[X ≥ (1 + ε)np] ≤ exp(−ε2np/3), and
Prob.[X ≤ (1− ε)np] ≤ exp(−ε2np/2),

for any 0 < ε < 1, and m > np.
Now we are ready to describe our algorithm. Let

N = M c. In practice c can be assumed to be a
constant. In today’s PC market, M is of the order
of megabytes and the disk space is of the order of
gigabytes. So it is perhaps safe to assume that c
is no more than 3. To begin with each key is alive
and n = N .

Algorithm RSelect

repeat

Step 1. Let n be the number of alive
keys. If n ≤ M then goto Step 6. Each
alive key is included in the sample S with
probability M

n . The expected number of
sample keys is M . We can show that the
actual number of keys in S is M + õ(M).
Count the number s of sample keys.

Step 2. Sort S and pick two keys �1 and
�2 from S whose ranks in S are i s

n−δ and
i s
n + δ, respectively, for δ ≥ √

3αs log n,
for any fixed α ≥ 1.



Step 3. Compute the number n1 of alive
keys that are less than �1 and the number
n2 of alive keys that have a value in the
range [�1, �2].

Step 4. If i < n1, or i > n1 + n2, or
n2 >

n
M0.4 , goto Step 1.

Step 5. Any alive key whose value lies
outside the range [�1, �2] dies. Set i =
i− n1 and n = n2.

forever

Step 6. Sort the alive keys and output the ith
smallest key.

Analysis. In Step 1, the number of sample keys
has a binomial distribution B(n,M/n). An appli-
cation of Chernoff bounds shows that s = M +
õ(M). Also Step 1 takes O( n

DB ) I/O read opera-
tions.
Since S is kept in the internal memory, Step 2

does not involve any I/O operations.
In Step 3, an application of Lemma 3.1 implies

that the number n2 of keys surviving Step 5 is
Õ

(
n√
s

√
log n

)
= Õ

(
n

M0.4

)
. As a result it follows

that, the number of iterations of the repeat loop is
Õ(c).
In Step 4, we can show that the probability of

executing the goto statement is very small.
Step 5 involves O( n

DB ) I/O read operations.
Note that the number of surviving keys from one

iteration of the repeat loop to the next decreases
by a factor of M0.4 with high probability. Thus it
follows that the total number of I/O read opera-
tions made by the entire algorithm is Õ

(
N

DB

)
.

Thus we get the following Theorem.

Theorem 3.1 Selection from out of N keys can
be performed on the PDS using Õ

(
N

DB

)
I/O read

operations. ✷

4 A Deterministic Selection Al-

gorithm

In this section we present our deterministic se-
lection algorithm for the PDS. The number of
I/O read operations performed by the algorithm
is O

(
N

DB

)
. The underlying constant is small and

hence this algorithm has the potential of being
practical.

Sampling has also dominated as a technique use-
ful in the design of deterministic selection algo-
rithms. For example, Blum et al.’s algorithm [7]
partitions the input such that there are 5 elements
in each part, finds the median of each part, finds
the median M of these medians, splits the input
into two groups (those that are ≤ M and those
that are greater thanM), identifies the group that
has the key to be selected, and finally performs a
selection in the group that contains the key to be
selected. The medians of the 5-element parts can
be thought of as a sample of the input keys and
hence the median M of these medians can be ex-
pected to be an approximate median of the input
keys.

Consider a collection X of n keys whose ith
smallest key we are interested in finding. We use
the following strategy to identify two elements of
X such that they will bracket the ith smallest ele-
ment and also the number of keys of X that have
a value in between these two keys is not large.

Partition the collection X = R0 such that there
are M keys in each part. Sort each part. From
each part retain those keys that are at a distance
of

√
M from each other. That is, keep the keys

whose ranks are
√
M, 2

√
M, 3

√
M, . . .. Thus the

number of keys in the retained set R1 is n√
M
. Now

group the elements of R1 such that there are M
elements in each part, sort each part, and retain
only every

√
Mth element in each part. Call the



retained set R2. Proceed to obtain Ri’s in a similar
fashion (for i ≥ 3) until we reach a stage when
|Rj | ≤ M . If n =M c, then clearly, j = 2c− 2.
This process can be represented by a tree of de-

gree
√
M . Each leaf has M input elements. All

the elements in the leaves constitute R0. The root
has Rj . Let the root be in level j. Let its children
be in level j−1, and so on. The leaves are at level
0. There are

√
M children to the root. Each such

child has M elements.
√
M elements are passed

on from each child to its parent. In general each
node in the tree has M elements.

√
M elements

from out of these will go to its parent. Each node√
M children.

Pick from Rj two elements �1 and �2 whose
ranks are i |Rj |

n − δ and i |Rj |
n + δ, respectively.

Without loss of generality assume that |Rj | =
M . Then, |Ri| = M(

√
M)j−i. Consider an el-

ement x whose rank in Rj is q. Then the rank
of q in Rj−1 will be in the range [q

√
M, q

√
M +√

M(
√
M − 1)]. This rank is also in the interval

[q
√
M, q

√
M +M ]. I.e., there is an uncertainty of

M in the rank of x in Rj−1. Each child of the root
contributes

√
M−1 ≈ √

M to this uncertainty. In
general the uncertainty in the rank of x in Ri is
contributed to by each node in level i. Note that
there areM (j−i)/2 nodes at level i. Each such node
contributes

√
M − 1 to the uncertainty. Thus, if

U(i) is the maximum possible rank of x in Ri, then
U(i) satisfies:

U(i) ≤
√
M U(i+ 1) +M (j−i+1)/2

which solves to U(i) ≤ M (j−i)/2U(j) + (j −
i)M (j−i+1)/2. When i = 0, we get U(0) ≤
M j/2U(j) + jM (j+1)/2. In other words, U(0) ≤
qM c−1 + (2c− 2) n√

M
. Note that c = log n

log M .

As a result, if we pick δ to be (2c − 2 + ε)
√
M ,

for any ε > 0, the rank of �1 in R0 will be in the

interval [
i− (2c − 2 + ε)

n√
M

, i− ε
n√
M

]

Also, the rank of �2 in R0 will lie in the interval[
i+ (2c− 2 + ε)

n√
M

, i+ (4c − 4 + ε)
n√
M

]

Put together, we realize that the ith smallest
element of R0 will have a value in the interval
[�1, �2] and also the number of keys of R0 that
have a value in the interval [�1, �2] is no more than
(6c − 6 + 2ε) n√

M
.

Call the above process of starting from R0

and obtaining R1, R2, . . . , Rj a stage of sampling.
Note also that the number of I/O read operations
needed for a stage is O

(
n

DB

)
where |R0| = n. One

could see that a stage of sampling corresponds to
one iteration of the repeat loop of RSelect. Sim-
ilar sampling techniques have been employed by
Munro and Paterson [12].

Now we present a detailed description of our
algorithm. Let K = k1, k2, . . . , kN be the input.
Say we are interested in finding the ith smallest
key. To begin with each key is alive and n = N .

Algorithm DSelect

repeat

Step 1. If n ≤ M goto Step 3. Perform
a stage of sampling in the collection of
alive keys. As a result, obtain two keys
�1 and �2 that will bracket the key to be
selected.

Step 2. Scan through the alive keys and
kill the keys that have a value outside the
range [�1, �2]. Count the number of keys
surviving this step. Let this number be
n.



forever

Step 3. Sort the alive keys and output the ith
smallest element.

Analysis. Clearly, the number of alive keys re-
duces by a factor of Ω

(√
M log M
log n

)
from one itera-

tion to the next of the repeat loop. Therefore, if
N = M c, the number of iterations of the repeat
loop is O(c).

Also, the number of I/O read operations needed
in any iteration of the repeat loop is O

( n
DB

)
as has

been discussed before. Since the number of alive
keys decreases by a factor of Ω

(√
M log M
log n

)
from

one iteration to the next, the total number of I/O
read operations is only O

(
N

DB

)
. We arrive at the

following Theorem.

Theorem 4.1 We can perform selection from out
of N given keys on the PDS using O

(
N

DB

)
I/O

read operations. ✷

5 Conclusions

We have presented two selection algorithms for the
PDS. Both are asymptotically optimal. The un-
derlying constants in the time bounds are small
and hence the algorithms have the potential of be-
ing practical.
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