
Proceedings of the IASTED International Conference

Parallel and Distributed Computing and Systems

November� 3-6, 1999 in Cambridge Massachusetts, USA

A Simple Parallel Algorithm
for Solving Banded Systems

�

SanguthevarRajasekaran JunLuo�
raj, jluo � @cise.ufl.edu

CISEDepartment
Universityof Florida

Gainesville,FL

PeterSheng

pete@coastal.ufl.edu
CoastalEngg.Dept.
Universityof Florida

Gainesville,FL

Abstract

In this paperwe considertheproblemof solving
abandedsystemof linearequations.Wepresenta
simplealgorithm.If thenumberof bands(or diag-
onals)is � , thenthework doneis �����
	���
 , where�
is thenumberof equations.Thisalgorithmis eas-
ily parallelizableonvariousmodels.For example,
when ����������
 , the algorithmruns in ������������

time on anEREW PRAM using ����! � processors.
Whenimplementedonaclusterof " workstations,
the algorithmrunsin time �$#%�&(' (for �)�*������

and",+ ����! � ).
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1 Introduction

The problemof solving a systemof linear equa-
tionshasmany applications.An importantspecial
caseis whenthe systemis bandedwith � diago-
nals. When �-�/. and �,�/0 , we have a tridiag-
onal systemanda pentadiagonalsystem,respec-
tively. Thesetwo specialcasesthemselveshave
numerousapplicationsandhave beenstudiedex-
tensively. For instance,anumberof hydrodynamic
modelsinvolvethesolutionof tridiagonalandpen-
tadiagonalsystemsfor theircomputersimulations.

Theinput arean �213� matrix 4 andan �215�
columnvector 6 . Theproblemis to find an �)17�
column vector 8 such that 498*� 6 . The only
nonzeroelementsof 4 arealong the main diag-:
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onal andthe diagonalssurroundingit. In partic-
ular, the numberof nonzerodiagonalsis � . I.e.,49;�<>=�@? only if A BDC2EFA
+HGJI	LK .

This problemhasbeenstudiedwidely. For a
comprehensivecoverageontheknownalgorithms,
the readeris referedto the texts [2] and[3]. For
solving tridiagonal systems,there exist optimal
parallel logarithmic time algorithms. The cyclic
reductionalgorithm [3] is one such. This algo-
rithm issomewhatcomplex andappliesonlywhen�3�@M%NOC�� for someinteger P . Bar-On[1] hasalso
givenanalgorithmthathasthesameperformance.
Thisalgorithmis alsofairly complex.

The algorithmpresentedin this paperis very
simple, can handleany � , and efficiently paral-
lelizeson many model. On theEREWPRAM, it
runsin ���Q�R�����F
 time using ����! � processorswhen�S�T������
 . On a clusterof " workstations,it runs
in time �$# �&U' when �V�W���X��
 and ",+ ����! � . The
work doneby thealgorithmof Bar-On [1] is also����� 	 ��
 . When � is a costant,the algorithm of
Bar-On andthealgorithmpresentedin this paper
have the sameprocessorand time bounds. The
algorithmsof [1] arecomplex.

2 The New Algorithm

In this sectionwe provide a detaileddescription
of ouralgorithmandanalyzeits performance.We
startby describingthe algorithmas it appliesto
a tridiagonalsystemof linear equationsandthen
extendit to ageneral� .
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Figure1: An Examplefor theAlgorithm

Let "7YZ� bethenumberof processorsavail-
able.We have to solve thesystem4983�W6 , where4 is an �[17� matrix and 6 is an �\1]� column
vector. For simplicity assumethat � is an inte-
gral multiple of " . Thereare threestages in the
algorithm. In thefirst stage,theequationsareas-
signedto theprocessorsevenly. Thefirst proces-
sorgetsthefirst �& equations,thesecondprocessor
is assignedthenext �& equations,andsoon. Each
processoreliminatesasmany unknownsaspossi-
ble from out of the equationsit got. Clearly, at
theendof thisstage,eachprocessorwill havetwo
equationsfor a total of M^" equations. These M_"
equationsform a tridiagonalsystem. In the sec-
ondstage,thenew systemis solved. This canbe
doneeitherin parallelor employing a singlepro-
cessor. In the third stage,eachprocessorback-
substitutesthe known valuesto get the valuesof
all of its unknowns.

Notethat if all theequationsinvolving anun-
known arewith thesameprocessor, theunknown
can be eliminatedin ������
 time. Thus the total
work donein the first stageis �����F
 . The work
donein the secondstageis also �����F
 . Call this
algorithmBand.

Example. Wepresentanexamplebeforeproceed-
ing further. Considerthecase�`�a��M and ",�b. .
Let the unknowns be 8Fc^de8 	 dLfgfLfgde8Fc 	 . Eachpro-
cessoris assignedfourequations.Thefirstproces-
soreliminatestheunknowns 8 	 and 8ih . Thesec-
ondprocessoreliminatestheunknowns 8ij and 8lk
andthe third processoreliminatesthe unknowns8Fc�m and 8Fc!c .

In the secondstagewe have a systemof n
equationsinvolving theunknowns 8Fc^de8po�de8iq , 8irsde8it ,
and 8Fc 	 . Theseequationsalso form a tridiago-
nal system. Oncethis systemis solved, a back-
substitutionwill completethealgorithm. u
3 PRAM Implementation

Now weshow thatthealgorithmBand canbeim-
plementedoptimally on a PRAM in logarithmic
time. We assumetheEREWPRAM model.This
model consistsof a collection of " synchronous
processors[2]. Eachprocessoris a RandomAc-
cessMachine.Theprocessorscommunicatewith
the help of a commonmemory. For instanceif
processorB wantsto communicatewith processorE , B writes its messagein commonmemorycellE in one stepand E readsit in the secondstep.
Therearemany versionsof thePRAM depending
on how readandwrite conflictsareresolved. In
the EREW PRAM, we assumethat no two pro-
cessorscanaccessthe samecommoncell at the
sametime eitherfor thepurposeof readingfrom
or writing into.

To begin with, we employ "7�Z� processors.
The algorithmrunsin time ������������
 time. Later
we indicatehow to reducetheprocessorboundto����! � . Therearetwo phasesin the algorithm. In
thefirst phaseunknownsareeliminatedin stages
sothatonly �����s
 of themremainat theend.This
systemissolvedin ���X��
 time. In thesecondphase,
the known solutionsareback-substitutuedto get
thevaluesof all theunknowns.

Algorithm PBand0

Elimination

Considera completebinary tree v with� o leaves. It helpsto assumethat there
is a processorat eachnodeof the tree.
Eachleaf is assignedfour of the input
equations.The leavesstartby eliminat-
ing all theunknowns they canandsend
theremainingeqauationsupthetree.Each
internalnode,uponreceiving equations
from its children, eliminatesunknowns
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andsendstheremainingequations(atmost
two) to its parent.

When the root gets equationsfrom its
children,it solvesthoseequationscom-
pletely.

Back-Substitution

Theroot startsthis phaseby sendingthe
valuesit obatainedby solving its equa-
tions. It sends(at most)two valueseach
to its children. Any internalnode,upon
receiving valuesfrom its parent,back-
substitutesandknows thevaluesof four
unknowns. It sendstwo valueseachto
its children.

Whentheleavesperformback-substituion,
thevaluesof all theunknownsareknown.

Lemma 3.1 AlgorithmPBand0 runsin ������������

time.

Proof. The correctnessof the algorithmis quite
evident. The heightof the completebinary treev is ���Q�R�����F
 . During theeliminationphase,the
time spentat eachlevel of the tree is only ������

andhencethis phasetakes �����R�w�x��
 time.

In the back-substitutionphasealso, the time
spentat eachlevel of thetreeis only ������
 . Thus
thewholealgorithmrunsin ���Q�R���y��
 time.

The processorboundof the above algorithm
canbereducedto "z� ����! � usinga standardtech-
niqueasfollows.

Algorithm PBand

Step 1. Assign Mx�R����� equationsto each
of the first �	 ���! � processors. Each of
theseprocessorseliminatesall the un-
knownsit canfrom itsequationsin ���Q�R�����F

time.

Step 2. Now we have a tridiagonalsys-
temwith ����! � equations.Solve this sys-
temusingAlgorithm PBand0.

Step 3. Eachprocessorperformsback-
substitutionto obtain the valuesof itsMx�R����� variables.

Theorem 3.1 Atridiagonalsystemof linearequa-
tions can be solvedin time ���Q�R�����F
 using ����! �EREWPRAMprocessors.

Proof. Step1 takes ������������
 time. Step2 canbe
completedin ������������
 time, in accordancewith
Lemma 3.1. The time taken by Step 3 is also���Q�R�����F
 . u
4 Implementation on a Cluster of Workstations

Algorithm Band can also be implementedeffi-
cientlyonaclusterof workstations,for �{�@���X��
 .
If thereare" processorsthentheruntimeis � # �& ' ,
for "5+ ����! � . Theuseof workstationclustershas
becomean attractive alternative to the useof su-
percomputers.Onecould employ messagepass-
ing mechanismssuchasthePVM, MPI, or JAVA
toconnectheterogeneousmachinestoachievepar-
allelism. Very goodspeedupshave beenachieved
usingclusters.

The idea is very similar to Band. The input
equationsarewith a host. Thehostpartitionsthe
input equationsinto " evenpartsandsendsa part
to every processor. Eachprocessoreliminatesas
many variablesaspossiblefrom the equationsit
receives from the host. After this, eachproces-
sorwill haveat mosttwo equationswhich will be
sentto thehost.Thehostsolvesthe M^" equations
in ���|"i
 timeandsendstwo relevantvaluesto each
processor. Eachof theprocessors,uponreceiving
two valuesfrom the host, back-substitutesthese
valuesto computethe valuesof all of its vari-
ables.Finally, theprocessorssendtheir valuesto
thehost.

Excluding the time for communications,the
totalwork doneby theprocessorsis ������
~}-����"l
 .
Thework doneby eachof theslave processorsis� #��&U' . Thustheparalleltime taken(omitting the

communicationtime) is �$# �&{}2"p' . This will be

� #��& ' if "Z+ �& . If "�� �& , the host can seek
thehelpof theslavessomemore.But in practice,
takinginto accountthecommunicationtime also,
it maynot benecessaryto communicatewith the
slavesmoreto seektheirhelp.
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5 General Banded Systems

In this sectionwe dealwith thecase�S�]. . Ideas
similar to Band canbeappliedhereaswell. Here
alsowe canconsidera completebinary treewith�I�� c leaves. Eachleaf has ��C@� equationsto be-
gin with. In the elimination phase,leaves start
by sendingtheir equationsto their parents.Any
internalnodeuponreceiving MU����C���
 equations,
eliminatesasmany variablesasit can,andsends
theremaining(atmost ��C�� ) equationsto its par-
ent. Whentheroot getsequations,it solvesthem
completelyandtheback-substitutionphasestarts
thereafter.

Note that in the original input, eachvariable
occursin at most � equations.If a processorhas
all the � equationsin which a variable 8p; occurs,
it caneliminatethis variablein ����� 	 
 time. Thus
thetimespentateachlevel of thetree v is ����� h 
 .
We can reducethis time to ������
 preservingthe
work done,if we have �~	 processorsat eachnode
of thetree.

On anEREWPRAM, eachof thetwo phases
will take � # ������� #,�I�� c '�' �a�������R���y��
 time, us-

ing �LI��I�� c processors.

The processorboundof the above algorithm
can be reducedto �LI���! � using the techniqueem-
ployed for PBand. Eachleaf in the tree is as-
signed���R�w��� equationsto startwith. Every pro-
cessorperformslocaleliminationin �������R���y��
 time.
At this time the above algorithmis usedto solve
theresulting� #[����! � ' equations.After this,back-
substitutioncanbedoneby theprocessorslocally
in time �������R���x�F
 .

Thetotalwork donein themodifiedalgorithm
is ���Q�F� 	 
 . Thuswegetthefollowing

Theorem 5.1 A bandedsystemwith � diagonals
canbesolvedin �������R���y��
 timeusing �LI���! � EREW
PRAMprocessors.

Note. In [1], Bar-On givesan algorithmfor the
aboveproblemthatrunsin time �����R�w�����R�w����
 that
does������� 	 
 work. In practicesinceweonly have
a small numberof processors,the most crucial
performancemeasureof any parallelalgorithmis
the total work doneby the algorithm. Of course

thenumberof processorsassumedby theparallel
algorithmshouldbereasonablylarge.

A theoremsimilarto Theorem5.1canbeproven
for aclusterof workstationsalso.

6 Conclusions

In this paperwe have presenteda simple algo-
rithm for solvingdiagonalsystemof linearequa-
tions. Whenthenumberof diagonals� is a con-
stant,ouralgorithmis asymptoticallyoptimal.For
any � , the total work doneby our algorithm is���Q�F� 	 
 .
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[2] J. Já Já, Introductionto Parallel Algorithms,
Addison-Wesley Publishers,1992.

[3] Lakshmivarahan and Dhall, Parallel Nu-
meric Algorithms, PrenticeHall Publishing
Company, 1990.

-4-


