

1 Hashing

Definition A family H of hash functions is 2-universal if for any $x, y \in M$ with $x \neq y$,

\[\text{Prob} \left[h(x) = h(y) \right] \leq \frac{1}{n}, \]

where $h \in H, h : M \rightarrow N, M = \{0, 1, \ldots, m - 1\}, N = \{0, 1, \ldots, n - 1\}$.

Construction:

Pick a prime $p \geq m$, use the field $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$. Let $f_{a,b}(x) = ax + b \mod p$, for $a, b \in \mathbb{Z}_p, a \neq 0$. Let $g(x) = x \mod n$, and let $h_{a,b}(x) = g(f_{a,b}(x)) = (ax + b) \mod p \mod n$. Then

\[H = \{h_{a,b} : a, b \in \mathbb{Z}_p, a \neq 0\}, \]
\[|H| = p(p - 1). \]

Note. \exists a prime number between m and $2m$ for any integer $m \Rightarrow \text{Any member of } H \text{ can be specified with } O(\log m) \text{ bits.}

Definition $\delta(x, y, h) = \begin{cases}
1 & \text{if } h(x) = h(y), x \neq y \\
0 & \text{otherwise}
\end{cases}$

$\delta(X, y, h), \delta(x, y, H), \text{ etc. can be defined likewise.}$

Fact. If H is 2-universal, then $\forall x, y \in M, \delta(x, y, H) \leq \frac{|H|}{n}$.

Fact. If H is 2-universal and $S \subseteq M$, then $\forall x \in M$ and a randomly picked $h \in H$, $E[\delta(x, S, h)] \leq \frac{|S|}{n}$.

Lemma. If $H = \{h_{a,b} : a, b \in \mathbb{Z}_p, a \neq 0\}$, then $\forall x, y \in \mathbb{Z}_p, x \neq y$,

\[\delta(x, y, H) = \delta(\mathbb{Z}_p, \mathbb{Z}_p, g). \]

Proof. The above statement says that the number of functions in H under which x and y collide is the same as the number of pairs in \mathbb{Z}_p that collide under g. Fix x and y and let $r = (ax + b) \mod p$ and $s = (ay + b) \mod p$. Note that if $x \neq y$, then $r \neq s$. Let $F(a, b) = ((ax + b) \mod p, (ay + b) \mod p)$.

Fact. F is one-to-one and onto.

Consider two pairs (a_1, b_1) and (a_2, b_2). Let $F(a_1, b_1) = (r_1, s_1)$ and $F(a_2, b_2) = (r_2, s_2)$.

If $(a_1, b_1) \neq (a_2, b_2)$, can $(r_1, s_1) = (r_2, s_2)$? Note that $r_1 = (a_1x + b_1) \mod p$ and $r_2 = (a_2x + b_2) \mod p$. If $r_1 = r_2$, then, $x = (b_2 - b_1)(a_1 - a_2)^{-1} \mod p$. Similarly, if $s_1 = s_2$, we can see that $y = (b_2 - b_1)(a_1 - a_2)^{-1} \mod p$. As a result, if $(r_1, s_1) = (r_2, s_2)$, it will imply that $x = y$ which is a contradiction. Thus F is one-to-one.

Let (r, s) be any pair from \mathbb{Z}_p with $r \neq s$. We can solve $ax + b \mod p = r$ and $ay + b \mod p = s$ to get a unique pair (a, b) with $a \neq 0$. Thus F is onto.

We realize that the function $f_{a,b}$ cannot make x and y to collide if $x \neq y$. For a given x and y (with $x \neq y$), when we change a and b, $F(a, b)$ ranges over all pairs (r, s) (with $r, s \in \mathbb{Z}_p$ and $r \neq s$). Collisions happen only because of the function g.

For a given x and y, the number of hash functions that make x and y to collide is the same as the number of pairs (a, b) (with $a \neq 0$) for which $h_{a,b}(x) = h_{a,b}(y)$. This number is the same as the number of pairs (a, b) for which $g(f_{a,b}(x)) = g(f_{a,b}(y))$.

In turn, this number is the same as the number of pairs (r, s) (with $r, s \in \mathbb{Z}_p$ and $r \neq s$) for which $g(r) = g(s)$.

\[\square \]
Lemma. \(H \) is 2-universal. i.e. \(\delta(x, y, H) \leq \frac{|H|}{n} \).

Proof. Let \(A_Z = \{ x \in \mathbb{Z}_p : g(x) = Z \}, Z = 0, 1, \ldots, n - 1 \).
Note that \(A_Z \leq \lceil \frac{p}{n} \rceil \) for any \(Z \in \mathbb{N} \).
\[\Rightarrow \delta(\mathbb{Z}_p, \mathbb{Z}_p, g) \leq p \left(\lceil \frac{p}{n} \rceil - 1 \right) \leq p \left(\frac{p-1}{n} \right) = \frac{|H|}{n}. \]

\[\Box \]

2 Searching in \(O(1) \) time (M. Ajtai, J. Komlós & E. Szemerédi, 1985)

Let \(M = \{ 0, 1, \ldots, m - 1 \}, N = \{ 0, 1, \ldots, n - 1 \} \). W.L.O.G., let \(p = m + 1 \) be a prime number.
For any \(1 \leq k \leq m \), let \(h_k(x) = kx \mod p \mod n \).
Let \(V \subseteq M \) be the input set where \(|V| = v \). Let \(B_i(k, n, V) \) be the set of elements of \(V \) that are hashed into \(i \), i.e.,
\[B_i(k, n, V) = \{ x \in V : h_k(x) = i \}, i = 0, 1, \ldots, n - 1. \]
Let \(b_i(k, n, V) = |B_i(k, n, V)| \).

Lemma. \(\sum_{k=1}^{m} \sum_{i=0}^{n-1} \left(\binom{b_i(k, n, V)}{2} \right) < \frac{mv^2}{n} \) for all \(V \subseteq M \) and \(n > v \).

Proof. \(\binom{b_i(k, n, V)}{2} \) is the number of sets \(\{x, y\} \), s.t. \(x \) and \(y \) collide under \(h_k \) and \(h_k(x) = i \). And \(\sum_{i=0}^{n-1} \left(\binom{b_i(k, n, V)}{2} \right) \) is the number of sets \(\{x, y\} \), s.t., \(x \) and \(y \) collide under \(h_k \).
\[\Rightarrow \text{It is the number of tuples } (k, \{x, y\}), \text{s.t., } kx \mod p \mod n = ky \mod p \mod n. \]
\[\Rightarrow k(x - y) \mod p \in \{ \pm n, \pm 2n, \ldots, \pm \left\lfloor \frac{p-1}{n} \right\rfloor n \} \]
Note that \(k(x - y) \mod p = jn \) has a unique solution for \(k \) if we fix \(x \) and \(y \), for any \(j = 1, \ldots, \left\lfloor \frac{p-1}{n} \right\rfloor \).
\[\Rightarrow \text{For any } x, y \in \mathbb{Z}_p, \exists \leq 2 \left(\frac{p-1}{n} \right) \text{ functions } h_k \text{ under which } x \text{ and } y \text{ collide.} \]
\[\Rightarrow \sum_{k=1}^{m} \sum_{i=0}^{n-1} \left(\binom{b_i(k, n, V)}{2} \right) \leq \binom{v}{2} \left(\frac{2(p-1)}{n} \right) < \frac{(p-1)v^2}{n} = \frac{mv^2}{n}. \]
\[\Box \]

Corollary. \(\exists k, \text{s.t., } \sum_{i=0}^{n-1} \left(\binom{b_i(k, n, V)}{2} \right) < \frac{v^2}{n}. \)