Selection:

Input: \(X = k_1, k_2, \ldots, k_n \) and \(i, 1 \leq i \leq n \)

Output: the \(i \)th smallest element of \(X \).

Fact: let \(y \) be any element. We can compute \(\text{Rank}(y, X) \) in \(O(\log n) \) time. This can be done using a prefix addition using \(\frac{n}{\log n} \) CREW PRAM processors.

\[\Rightarrow \text{selection can be done in } O(\log n) \text{ time using } \frac{n^2}{\log n} \text{ Processors.} \]

Theorem: we can solve selection in \(\tilde{O}(\log n) \) time using \(\frac{n}{\log n} \) CREW PRAM processors.

An Algorithm:
To begin with, each key is alive; \(N \) is the number of alive keys at any time;
\(N := n; \quad P = \frac{n}{\log n} \)

While \(N > \sqrt{n} \) do

1) Pick a sample \(S \) of size \(s \) keys; the first \(s \) processors pick one sample key each randomly. Here \(s = \frac{N}{3} \).
 This step takes \(O(1) \) time.

2) Sort the sample and pick two elements \(l_1 \) and \(l_2 \), so that \(\text{Rank}(l_1, S) = i \frac{s}{N} - \delta \)
 \(\text{Rank}(l_2, S) = i \frac{s}{N} + \delta \); Where \(\delta = \sqrt{4\alpha \log n} \)
 This step takes \(O(\log n) \) time.

3) Count the number of \(N_1 \) of alive keys that are \(< l_1 \); as well count the number \(N_2 \) of alive keys in the range \([l_1, l_2] \).
 This step will take \(O(\log n) \) time, since we can use prefix computation.

4) If \(!N_1 < i \leq N_1 + N_2 \) then start over from step 1.
This takes $O(1)$ time.

5) Delete all the keys that are not in the range $[l_1, l_2]$.

 $i = i - N_1$;
 $N = N_2$.
 This step takes $O(\log n)$ time.

6) Concentrate the alive keys using a prefix computation.
 This step will take $O(\log n)$ time.

End of while

7) Sort the alive keys using the trivial algorithm and output the ith smallest element.
 This step will take $O(\log n)$ time.

Analysis:
According to the sampling lemma, the number of alive keys after each run of the while loop is

\[\tilde{O} \left(\frac{N}{\sqrt{s}} \sqrt{\log N} \right) = \tilde{O} \left(\frac{N}{\sqrt{\log N}} \right) \Rightarrow \tilde{O} \left(N^{0.9} \right). \]

After a constant number of while loops, the number of keys will be $\tilde{O}(\sqrt{n})$. □

Corollary: we can do the same in $\tilde{O}(\frac{\log n}{\log \log n})$ time using $\frac{n}{\log n} \log \log n$ arbitrary CRCW PRAM processors.

Sorting:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Model</th>
<th>Processors</th>
<th>Time</th>
<th>Rand/Det</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCHER</td>
<td>Butterfly</td>
<td>n</td>
<td>$\frac{1}{2} \log^2 n$</td>
<td>Deterministic</td>
<td>1961</td>
</tr>
<tr>
<td>PREPARATA</td>
<td>CRCW PRAM</td>
<td>$n \log n$</td>
<td>$O(\log n)$</td>
<td>Deterministic</td>
<td>1971</td>
</tr>
<tr>
<td>AKS</td>
<td>Sorting network</td>
<td>n</td>
<td>$O(\log n)$</td>
<td>Deterministic</td>
<td>1981</td>
</tr>
<tr>
<td>REISCHÜK</td>
<td>CRCW PRAM</td>
<td>n</td>
<td>$\tilde{O}(\log n)$</td>
<td>Randomized</td>
<td>1981</td>
</tr>
<tr>
<td>COLE</td>
<td>EREW PRAM</td>
<td>n</td>
<td>$O(\log n)$</td>
<td>Deterministic</td>
<td>1984</td>
</tr>
<tr>
<td>RAJASEKARAN & REIF</td>
<td>CRCW PRAM</td>
<td>$n(\log n)^\epsilon$, $0 < \epsilon < 1$</td>
<td>$\tilde{O}(\frac{\log n}{\log \log \log n})$</td>
<td>Randomized</td>
<td>1987</td>
</tr>
<tr>
<td>COLE</td>
<td>CRCW PRAM</td>
<td>$n(\log n)^\epsilon$, $0 < \epsilon < 1$</td>
<td>$O(\frac{\log n}{\log \log \log n})$</td>
<td>Deterministic</td>
<td>1989</td>
</tr>
</tbody>
</table>
(ALON & AZAR 1985)

Theorem: Sorting of n elements using P processors needs $\Omega \left(\frac{\log n}{\log(1 + \frac{1}{P})} \right)$ time on the parallel comparison tree model.

Theorem: we can sort n elements in $\tilde{O}(\log n)$ time using n CRCW PRAM processors.

Proof: here is an algorithm…. *To be continued in the next lecture.*